8 resultados para Single Amino-acid

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase (RNAP) is required for specific recognition of promoter DNA sequences and transcription initiation. Regulation of bacterial gene expression can be achieved by modulating a factor activity. The Bacillus subtilis sporulation a σ factor, σ K, controls gene expression of the late sporulation regulon. σ K is synthesized as an inactive precursor protein, pro-σ K, with a 20 amino acid pro sequence. Proteolytic processing of the pro sequence produces the active form, σK, which is able to bind to the core subunits of RNAP to direct gene expression. Thus, the pro sequence renders σK inactive in vivo. After processing, the amino terminus of σK consists of region 1.2, which is conserved among various σ factors. To understand the role of the amino terminus of σK, namely the pro sequence and region 1.2, mutagenesis of both regions was pursued. NH 2-terminal truncations of pro-σK were constructed to address how the pro sequence silences σK activity. The work described here shows that the pro sequence inhibits the ability of σ K to associate with the core subunits and that a deletion of only six amino acids of the pro sequence is sufficient to activate pro-σ K for DNA binding and transcription initiation to levels similar to σ K. Additionally, site directed mutagenesis was used to obtain single amino acid substitutions in region 1.2 to address the role of region 1.2 in σ K transcriptional activity. Two mutations were isolated, converting a lysine (K) to an alanine (A) at position three, and an asparagine (N) to a tyrosine (Y) at position five, both of which alter the efficiency of transcription initiation by RNAP containing the mutant σKs. Surprisingly, σ KK3A increased transcript production when compared to wild type. This increase is due to improvement in DNA affinity and increased stability of RNAP-DNA promoter open complexes. σKN5Y showed a decrease in transcription activity that is related to defects in the ability of RNAP to make the transition from the closed to open RNAP-DNA complex. Results of both the pro sequence and region 1.2 analyses indicate that the amino terminus of σK is important for transcription activity and this work adds to the increasing body of evidence that the amino termini of many σ factors modulate transcription initiation by RNAP. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eukaryotic stress response is an essential mechanism that helps protect cells from a variety of environmental stresses. Cell death can result if cells are not able to properly adapt and protect themselves against adverse stress conditions. Failure to properly deal with stress has implications in human diseases including neurodegenerative disorders and distinct cancers, emphasizing the importance of understanding the eukaryotic stress response in detail. As part of this response, expression of a battery of heat shock proteins (HSP) is induced, which act as molecular chaperones to assist in the repair or triage of unfolded proteins. The 90-kDa HSP (Hsp90) operates in the context of a multi-chaperone complex to promote the maturation of nuclear and cytoplasmic clients. I have discovered that Hsp90 and the co-chaperone Sba1 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells in a karyopherin-dependent manner. I isolated nuclear accumulation- defective HSP82 mutant alleles to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to prevent nuclear accumulation of Hsp90 in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele, further linking localization to Hsp90 functional status. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program. The yeast molecular chaperone Hsp104 is a member of the Hsp100 superfamily of AAA+ ATPases. Unlike the Hsp90 family of chaperones, Hsp104 is not restricted to a specific set of client proteins, but rather assists in reactivating stress-denatured proteins by solubilizing protein aggregates. I have discovered that Hsp104, along with the Hsp70 chaperone, Ssa1, and the sHSP Hsp26 accumulate into RNA processing bodies (P- bodies) and stress granules, sites of mRNA metabolism. I found that Hsp104 recruits both Ssa1 and Hsp26 to P-bodies and that these three chaperones are required for stress granule formation. These findings suggest a possible role for chaperones in mRNA metabolism by aiding in the assembly, disassembly or conversion of these enigmatic mRNP complexes. Taken together, the work presented in this dissertation serves to better understand the eukaryotic stress response by illustrating the importance of subcellular-chaperone localization in key biological processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Delta cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the alpha/beta importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The placenta is the site of synthesis of various peptide and steroid hormones related to pregnancy. Human placental lactogen (hPL) is the predominant peptide hormone secreted by term placenta and its synthesis is tissue-specific and coupled to placenta development. The objective of this work was to study the structure and expression of the hPL.^ Poly(A('+))RNA from human term placenta was translated in a mouse-derived cell-free system. A major band corresponding to pre-hPL and a minor band comigrating with mature hPL, represent (TURN)15% of the total radioactively labeled proteins. Analysis of the poly(A('+))RNA showed a prominent band at approximately 860 nucleotides. A corresponding band was observed in Northern blots of total RNA, hybridized with {('32)P}-labeled recombinant plasmid containing a portion of hPL cDNA. Similar analyses of nuclear RNA showed at least four additional bands at 990, 1200, 1460 and 1760 nucleotides, respectively, which are likely precursors of hPL mRNA. Poly(A('+))RNA was used to construct a cDNA library, of which approximately 5% of the clones were found to hybridize to hPL DNA sequences. Heteroduplexes constructed between a clone containing a 815 bp hPL cDNA insert and a hPL genomic DNA clone revealed four small intervening sequences which can account for the lengths observed in hnRNA molecules.^ Recombinant plasmid HCS-pBR322 containing a 550 bp insert of a cDNA transcript of human placental lactogen (hPL) mRNA was ('3)H-labeled an hybridized in situ to human chromosome preparations. These experiments allowed assignment of the hPL and growth hormone (hGH) genes, which have over 90% nucleotide homology in their coding sequences, to band q22-24 of chromosome 17. A gene copy number experiment showed that both genes are present in (TURN)3 copies per haploid genome.^ Experiments were designed to determine if all members of the hPL gene cluster, consisting of four non-allelic genes, are transcribed in term placenta. Advantage was taken of differences in restriction endonuclease sites in the coding portions of the different hPL genes, to distinguish the putative cDNAs of the transcriptionally active genes. Two genes were found to be represented in the cDNA library and their cDNA transcripts were isolated and characterized. Three independent methods showed that their corresponding mRNAs are about equally represented in the hPL mRNA population. The two cDNAs code for prehPL proteins which differ at a single amino acid position. However the secreted hPLs have identical amino acid sequences. A tetramer insertion duplication was found in a palindrome area of the 3' untranslated region of one of the hPL mRNAs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is required for recognition of and transcription initiation from promoter DNA sequences. One family of sigma factors includes those related to the primary sigma factor from E. coli, σ70. Members of the σ70 family have four highly conserved domains, of which regions 2 through 4 are present in all members. Region 1 can be subdivided into regions 1.1 and 1.2. Region 1.1 affects DNA binding by σ 70 alone, as well as transcription initiation by holoenzyme. Region 1.2, present and highly conserved in most sigma factors, has not yet been assigned a putative function, although previous work demonstrated that it is not required for either association with the core subunits of RNA polymerase or promoter specific binding by holoenzyme. This study primarily investigates the functional role of region 1.2 during transcription initiation. In vivo and in vitro characterization of thirty-two single amino acid substitutions targeted to region 1.2 of E. coli σ70 as well as a deletion of region 1.2, revealed that mutations in region 1.2 can affect promoter binding, open complex formation, initiated complex formation, and the transition from abortive transcription to elongation. The relative degree of solvent exposure of several positions in region 1.2 has been determined, with positions 116 and 122 likely to be located near the surface of σ70. ^ During the course of this study, the existence of two “wild type” variants of E. coli σ70 was discovered. The identity of amino acid 149 has been reported variably as either arginine or aspartic acid in published articles and in online databases. In vivo and in vitro characterization of the two reported variations of E. coli σ70 (N149 and D149) has determined that the two variants are functionally equivalent. However, in vivo and in vitro characterization of single amino acid substitutions and a region 1.2 deletion in the context of each variant background revealed that the behavior of some mutations are greatly affected by the identity of amino acid 149. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in assembly of the divisome, a molecular machine composed of 14 known proteins which are all required for cell division. Although the biochemical functions of most divisome proteins are unknown, several of these have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane and is active. ^ We identified a single amino acid change in FtsA, R286W, renamed FtsA*, that completely bypasses the requirement for ZipA in cell division. This and other data suggest that FtsA* is a hyperactive form of FtsA that can replace the multiple functions normally assumed by ZipA, which include stabilization of Z rings, recruitment of downstream cell division proteins, and anchoring the Z ring to the membrane. This is the first example of complete functional replacement of an essential prokaryotic cell division protein by another. ^ Cells expressing ftsA* with a complete deletion of ftsK are viable and divide, although many of these ftsK null cells formed multiseptate chains, suggesting a role in cell separation for FtsK. In addition, strains expressing extra ftsAZ, ftsQ, ftsB, zipA or ftsN, were also able to survive and divide in the absence of ftsK. The cytoplasmic and transmembrane domains of FtsQ were sufficient to allow viability and septum formation to ftsK deleted strains. These findings suggest that FtsK is normally involved in stabilizing the divisome and shares functional overlap with other cell division proteins. ^ As well as permitting the removal of other divisome components, the presence of FtsA* in otherwise wild-type cells accelerated Z-ring assembly, which resulted in a significant decrease in the average length of cells. In support of its role in Z-ring stability, FtsA* suppressed the cell division inhibition caused by overexpressing FtsZ. FtsA* did not affect FtsZ turnover within the Z ring as measured by fluorescence recovery after photobleaching. Turnover of FtsA* in the ring was somewhat faster than wild-type FtsA. Yeast two-hybrid data suggest that FtsA* has an increased affinity for FtsZ relative to wild-type FtsA. These results indicate that FtsA* interacts with FtsZ more strongly, and its enhancement of Z ring assembly may explain why FtsA* can permit survival of cells lacking ZipA or FtsK.^