7 resultados para Simulation Design
em DigitalCommons@The Texas Medical Center
Resumo:
The Phase I clinical trial is considered the "first in human" study in medical research to examine the toxicity of a new agent. It determines the maximum tolerable dose (MTD) of a new agent, i.e., the highest dose in which toxicity is still acceptable. Several phase I clinical trial designs have been proposed in the past 30 years. The well known standard method, so called the 3+3 design, is widely accepted by clinicians since it is the easiest to implement and it does not need a statistical calculation. Continual reassessment method (CRM), a design uses Bayesian method, has been rising in popularity in the last two decades. Several variants of the CRM design have also been suggested in numerous statistical literatures. Rolling six is a new method introduced in pediatric oncology in 2008, which claims to shorten the trial duration as compared to the 3+3 design. The goal of the present research was to simulate clinical trials and compare these phase I clinical trial designs. Patient population was created by discrete event simulation (DES) method. The characteristics of the patients were generated by several distributions with the parameters derived from a historical phase I clinical trial data review. Patients were then selected and enrolled in clinical trials, each of which uses the 3+3 design, the rolling six, or the CRM design. Five scenarios of dose-toxicity relationship were used to compare the performance of the phase I clinical trial designs. One thousand trials were simulated per phase I clinical trial design per dose-toxicity scenario. The results showed the rolling six design was not superior to the 3+3 design in terms of trial duration. The time to trial completion was comparable between the rolling six and the 3+3 design. However, they both shorten the duration as compared to the two CRM designs. Both CRMs were superior to the 3+3 design and the rolling six in accuracy of MTD estimation. The 3+3 design and rolling six tended to assign more patients to undesired lower dose levels. The toxicities were slightly greater in the CRMs.^
Resumo:
Software for use with patient records is challenging to design and difficult to evaluate because of the tremendous variability of patient circumstances. A method was devised by the authors to overcome a number of difficulties. The method evaluates and compares objectively various software products for use in emergency departments and compares software to conventional methods like dictation and templated chart forms. The technique utilizes oral case simulation and video recording for analysis. The methodology and experiences of executing a study using this case simulation are discussed in this presentation.
Resumo:
In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.
Resumo:
We have developed an empirically based simulation system to create images equivalent in SNR and SPR to those that would be acquired with various possible SEDR configurations. This system uses a collection of spot collimated full-field images (SCFFIs) of an anthropomorphic chest phantom, taken at high exposure levels and rescaled in noise and intensity, then digitally collimated and combined to produce the simulated SEDR images. This system allows for the study of design trade-offs between different equalization feedback schemes and scatter rejection geometries in addition to estimating the clinical benefits of SEDR over traditional imaging techniques. Data from this simulation system has demonstrated that SEDR techniques offer potential significant improvements over currently used digital radiography techniques for chest imaging. ^
Resumo:
Mixed longitudinal designs are important study designs for many areas of medical research. Mixed longitudinal studies have several advantages over cross-sectional or pure longitudinal studies, including shorter study completion time and ability to separate time and age effects, thus are an attractive choice. Statistical methodology used in general longitudinal studies has been rapidly developing within the last few decades. Common approaches for statistical modeling in studies with mixed longitudinal designs have been the linear mixed-effects model incorporating an age or time effect. The general linear mixed-effects model is considered an appropriate choice to analyze repeated measurements data in longitudinal studies. However, common use of linear mixed-effects model on mixed longitudinal studies often incorporates age as the only random-effect but fails to take into consideration the cohort effect in conducting statistical inferences on age-related trajectories of outcome measurements. We believe special attention should be paid to cohort effects when analyzing data in mixed longitudinal designs with multiple overlapping cohorts. Thus, this has become an important statistical issue to address. ^ This research aims to address statistical issues related to mixed longitudinal studies. The proposed study examined the existing statistical analysis methods for the mixed longitudinal designs and developed an alternative analytic method to incorporate effects from multiple overlapping cohorts as well as from different aged subjects. The proposed study used simulation to evaluate the performance of the proposed analytic method by comparing it with the commonly-used model. Finally, the study applied the proposed analytic method to the data collected by an existing study Project HeartBeat!, which had been evaluated using traditional analytic techniques. Project HeartBeat! is a longitudinal study of cardiovascular disease (CVD) risk factors in childhood and adolescence using a mixed longitudinal design. The proposed model was used to evaluate four blood lipids adjusting for age, gender, race/ethnicity, and endocrine hormones. The result of this dissertation suggest the proposed analytic model could be a more flexible and reliable choice than the traditional model in terms of fitting data to provide more accurate estimates in mixed longitudinal studies. Conceptually, the proposed model described in this study has useful features, including consideration of effects from multiple overlapping cohorts, and is an attractive approach for analyzing data in mixed longitudinal design studies.^
Resumo:
The development of targeted therapy involve many challenges. Our study will address some of the key issues involved in biomarker identification and clinical trial design. In our study, we propose two biomarker selection methods, and then apply them in two different clinical trial designs for targeted therapy development. In particular, we propose a Bayesian two-step lasso procedure for biomarker selection in the proportional hazards model in Chapter 2. In the first step of this strategy, we use the Bayesian group lasso to identify the important marker groups, wherein each group contains the main effect of a single marker and its interactions with treatments. In the second step, we zoom in to select each individual marker and the interactions between markers and treatments in order to identify prognostic or predictive markers using the Bayesian adaptive lasso. In Chapter 3, we propose a Bayesian two-stage adaptive design for targeted therapy development while implementing the variable selection method given in Chapter 2. In Chapter 4, we proposed an alternate frequentist adaptive randomization strategy for situations where a large number of biomarkers need to be incorporated in the study design. We also propose a new adaptive randomization rule, which takes into account the variations associated with the point estimates of survival times. In all of our designs, we seek to identify the key markers that are either prognostic or predictive with respect to treatment. We are going to use extensive simulation to evaluate the operating characteristics of our methods.^
Resumo:
Phase I clinical trial is mainly designed to determine the maximum tolerated dose (MTD) of a new drug. Optimization of phase I trial design is crucial to minimize the number of enrolled patients exposed to unsafe dose levels and to provide reliable information to the later phases of clinical trials. Although it has been criticized about its inefficient MTD estimation, nowadays the traditional 3+3 method remains dominant in practice due to its simplicity and conservative estimation. There are many new designs that have been proven to generate more credible MTD estimation, such as the Continual Reassessment Method (CRM). Despite its accepted better performance, the CRM design is still not widely used in real trials. There are several factors that contribute to the difficulties of CRM adaption in practice. First, CRM is not widely accepted by the regulatory agencies such as FDA in terms of safety. It is considered to be less conservative and tend to expose more patients above the MTD level than the traditional design. Second, CRM is relatively complex and not intuitive for the clinicians to fully understand. Third, the CRM method take much more time and need statistical experts and computer programs throughout the trial. The current situation is that the clinicians still tend to follow the trial process that they are comfortable with. This situation is not likely to change in the near future. Based on this situation, we have the motivation to improve the accuracy of MTD selection while follow the procedure of the traditional design to maintain simplicity. We found that in 3+3 method, the dose transition and the MTD determination are relatively independent. Thus we proposed to separate the two stages. The dose transition rule remained the same as 3+3 method. After getting the toxicity information from the dose transition stage, we combined the isotonic transformation to ensure the monotonic increasing order before selecting the optimal MTD. To compare the operating characteristics of the proposed isotonic method and the other designs, we carried out 10,000 simulation trials under different dose setting scenarios to compare the design characteristics of the isotonic modified method with standard 3+3 method, CRM, biased coin design (BC) and k-in-a-row design (KIAW). The isotonic modified method improved MTD estimation of the standard 3+3 in 39 out of 40 scenarios. The improvement is much greater when the target is 0.3 other than 0.25. The modified design is also competitive when comparing with other selected methods. A CRM method performed better in general but was not as stable as the isotonic method throughout the different dose settings. The results demonstrated that our proposed isotonic modified method is not only easily conducted using the same procedure as 3+3 but also outperforms the conventional 3+3 design. It can also be applied to determine MTD for any given TTL. These features make the isotonic modified method of practical value in phase I clinical trials.^