3 resultados para Septic wastewater
em DigitalCommons@The Texas Medical Center
Resumo:
A 6-month-long, bench-scale simulation of an industrial wastewater stabilization pond (WSP) system was conducted to evaluate responses to several potential performance-enhancing treatments. The industrial WSP system consists of an anaerobic primary (1ry) WSP treating high-strength wastewater, followed by facultative secondary (2ry) and aerobic tertiary (3ry) WSPs in series treating lower-strength wastewater. The 1ry WSP was simulated with four glass aquaria which were fed with wastewater from the actual WSP system. The treatments examined were phosphorus supplementation (PHOS), phosphorus supplementation with pH control (PHOS+ALK), and phosphorus supplementation with pH control and effluent recycle (PHOS+ALK+RCY). The supplementary phosphorus treatment alone did not yield any significant change versus the CONTROL 1ry model pond. The average carbon to phosphorus ratio of the feed wastewater received from the WSP system was already 100:0.019 (i.e., 2,100 mg/l: 0.4 mg/l). The pH-control treatments (PHOS+ALK and PHOS+ALK+RCY) produced significant results, with 9 to 12 percent more total organic carbon (TOC) removal, 43 percent more volatile organic acid (VOA) generation, 78 percent more 2-ethoxyethanol and 14 percent more bis(2-chloroethyl)ether removal, and from 100- to 10,000-fold increases in bacterial enzyme activity and heterotrophic bacterial numbers. Recycling a 10-percent portion of the effluent yielded less variability for certain physicochemical parameters in the PHOS+ALK+RCY 1ry model pond, but overall there was no statistically-detectable improvement in performance versus no recycle. The 2ry and 3ry WSPs were also simulated in the laboratory to monitor the effect and fate of increased phosphorus loadings, as might occur if supplemental phosphorus were added to the 1ry WSP. Noticeable increases in algal growth were observed at feed phosphorus concentrations of 0.5 mg/l; however, there were no significant changes in the monitored physicochemical parameters. The effluent phosphorus concentrations from both the 2ry and 3ry model ponds did increase notably when feed phosphorus concentrations were increased from 0.5 to 1.0 mg/l. ^
Resumo:
A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^
Resumo:
The complement system functions as a major effector for both the innate and adaptive immune response. Activation of the complement cascade by either the classical, alternative, or lectin pathway promotes the proteolysis of C3 and C5 thereby generating C3a and C5a. Referred to as anaphylatoxins, the C3a and C5a peptides mediate biological effects upon binding to their respective receptors; C3a binds to the C3a receptor (C3aR) while C5a binds to the C5a receptor (C5aR, CD88). Both C3a and C5a are known for their broad proinflammatory effects. Elevated levels of both peptides have been isolated from patients with a variety of inflammatory diseases such as COPD, asthma, RA, SLE, and sepsis. Recent studies suggest that C5a is a critical component in the acquired neutrophil dysfunction, coagulopathy, and progressive multi-organ dysfunction characteristic of sepsis. The primary hypothesis of this dissertation was that preventing C3a-C3aR and C5a-C5aR mediated pro-inflammatory effects would improve survival in endotoxic, bacteremic and septic shock. To test this hypothesis, the murine C3aR and C5aR genes were disrupted. Following disruption of both the C3aR and C5aR genes, no abnormalities were identified other than the absence of their respective mRNA and protein. In models of both endotoxic and bacteremic shock, C3aR deficient mice suffered increased mortality when compared to their wild type littermates. C3aR deficient mice also had elevated circulating IL-1β levels. Using a model of sepsis, C3aR deficient mice had a higher circulating concentration of IL-6 and decreased peritoneal inflammatory infiltration. While these results were unexpected, they support an emerging role for C3a in immunomodulation. In contrast, following endotoxic or bacteremic shock, C5aR deficient mice experienced increased survival, less hemoconcentration and less thrombocytopenia. It was later determined that C5a mediated histamine release significantly contributes to host morbidity and mortality in bacteremic shock. These studies provide evidence that C5a functions primarily as a proinflammatory molecule in models of endotoxic and bacteremic shock. In the same models, C3a-C3aR interactions suppress the inflammatory response and protect the host. Collectively, these results present in vivo evidence that C3a and C5a have divergent biological functions. ^