7 resultados para Segregation analysis
em DigitalCommons@The Texas Medical Center
Resumo:
Isolated clubfoot, a common birth defect occurring in more than 135,000 livebirths worldwide each year, is associated with significant health care and financial burdens. Clubfoot is defined by forefoot adduction, hindfoot varus, midfoot cavus and hindfoot equinus. Isolated clubfoot, which is the focus of these studies, is distinct from syndromic clubfoot because there are no other associated malformations. Population, family, twin and segregation analysis studies provide evidence that genetic and environmental factors play an etiologic role in isolated clubfoot. The studies described in this thesis were performed to define the role of genetic variation in isolated clubfoot. Interrogation of a deletion region associated with syndromic clubfoot, suggested that CASP8 and CASP10, two apoptotic genes, play a role in isolated clubfoot. To explore the role of apoptotic genes in clubfoot, SNPs spanning genes involved in the apoptotic pathway in the six chromosomal deletion regions, and limb patterning genes, HOXD and HOXA, were interrogated. SNPs in mitochondrial mediated apoptotic genes and several SNPs in HOXA and HOXD genes were modestly associated with clubfoot with the most significant SNP, rs3801776, located in the basal promoter of HOXA9. Several significant associations were found with SNPs in NFAT2 and TNIP2. Significant gene interactions were detected between SNPs in HOX and apoptotic genes. These findings suggest a model for clubfoot in which variation in one gene is not sufficient to cause the malformation but requires variation several genes to perturb protein expression sufficiently to alter muscle and foot development. These results significantly impact our knowledge base by delineating underlying mechanisms causing clubfoot.
Resumo:
In this study, the evolutionary relationship between human chromosome 16p12-p13 and mouse chromosomes was investigated by determining the order of marker loci in the region and then identifying the chromosomal locations of the homologous loci in mice. Eighteen genes from human 16 were mapped to fifteen subchromosomal regions by a variety of mapping approaches.^ Thirteen of the genes were mapped in the mouse. Linkage analysis with backcross mice and segregation analysis in a mouse - Chinese Hamster Ovary (CHO) somatic cell hybrid panel informative for different regions of mouse genome were used. The results assigned the thirteen genes to three different mouse chromosomes.^ A group of six genes on mouse 16 was found to be closely linked to Scid. The order of Myh11 and Mrp remains ambiguous since no recombination was detected in backcross analysis. Their relative position in human is also uncertain since they were shown to be very close to each other. For the other mouse loci, an unambiguous gene order could be determined and was found to be identical to that in human. Therefore, they comprise a new conserved linkage group between the two species. The orientation of the group was inverted relative to the centromeres, i.e. the proximal loci in one species become distal in another. The size of the group was estimated to be from 4.4 to 8 Mb and 10 to 32 cM in human. In mouse, it was about 21 cM in the backcross analysis. The two boundaries of the conserved linkage were defined within a 1 Mb range. It is now possible to predict the locations of mouse homologs for some human disease genes based on their locations on human 16p.^ The six human 16p genes that map to MMU7 showed a different gene order in mouse than in human. No recombination was found between Crym and Umod while Crym was distal to D16S79A and proximal to D16S92. The location of Stp and Cdr2 with respect to the above four loci was not determined since they were not mapped in the same set of backcross mice. These genes greatly expanded an existing conserved synteny group between the human 16p12-p13 region and the MMU7. It now consists of eleven loci that span a region of probably more than 10 Mb in human. The gene order derived from this study provided further evidence for chromosomal rearrangements within the conserved synteny. (Abstract shortened by UMI.) ^
Resumo:
The human choriocarcinoma cell line JEG-3 is heterozygous at the adenosine deaminase (ADA) gene locus. Both allelic genes are under strong but incomplete repression causing a very low level expression of the gene locus. Because cytotoxic adenosine analogues such as 9-(beta)-D arabinofuranosyladenine (ara-A) and 9-(beta)-D xylofuranosyladenine (xyl-A) can be specifically detoxified by the action of ADA, these analogues were used to select for JEG-3 derived cells which had increased ADA expression. When JEG-3 cells were subjected to a multi-step, successively increasing dosage of either ara-A or xyl-A, resistant cells with increased ADA expression were generated. This increased ADA expression in the resistant cells was unstable, so that when the selective pressure was removed, cellular ADA expression would decrease. Subclone analysis of xyl-A resistant cells revealed that compared to parental JEG-3 cells, individual resistant cells had either elevated ADA levels or decreased adenosine kinase (ADK) levels or both. This altered ADA and ADK expression in the resistant cells were found to be independent events. Because of high endogenous tissue conversion factor (TCF) expression in the JEG-3 cells, the allelic nature of the increased ADA expression in most of the resistant cells could not be determined. However, several resistant subcloned cells were found to have lost TCF expression. These TCF('-) cells expressed only the ADA*2 allelic gene product. Cell fusion experiments demonstrated that the ADA*1 allelic gene was intact and functional in the A3-1A7 cell line. Chromosomal analysis of the A3-1A7 cells showed that they had no double-minutes or homogeneously staining chromosomal regions, although a pair of new chromosomes were found in these cells. Segregation analysis of the hybrid cells indicated that an ADA*2 allelic gene was probably located on this new chromosome. The analysis of the A3-1A7 cell line suggested that the expression of only ADA 2 in these cells was the result of possibly a cis-deregulation of the ADA gene locus or more probably an amplification of the ADA*2 allelic gene. Two effective positive selection systems for ADA('+) cells were also developed and tested. These selection systems should eventually lead to the isolation of the ADA gene.^
Resumo:
A rare familial cancer syndrome involving childhood brain tumors (CBT), breast cancer, sarcomas and an array of other tumors has been described (Li and Fraumeni 1969, 1975, 1982, 1987). A survey of CBT identified through the Connnecticut Tumor Registry in 1984 revealed a high frequency of CBT, leukemia and other childhood cancer in siblings of CBT patients (Farwell and Flannery, 1984). Other syndromes such as neurofibromatosis and nevoid basal cell carcinoma syndrome have also been associated with CBT; however, no systematic family studies have been conducted to determine the extent to which cancer aggregates in family members of CBT patients. This family study was designed to determine the frequency of cancer aggregation overall or at specific sites, to determine the frequency of known or potentially hereditary syndromes in families of CBT patients, and to determine a genetic model to characterize familial cancer syndromes and to identify specific kindreds to which such a model(s) might apply. This study includes 244 confirmed CBT patients referred to the University of Texas M. D. Anderson Cancer Center between the years 1944 and 1983, diagnosed under the age of 15 years and resident in the U.S. or Canada. Family histories were obtained on the proband's first (parents, siblings and offspring) and second degree (proband's aunts, uncles and grandparents) relatives following sequential sampling scheme rules. To determine if cancer aggregates in families, we compared the cancer experience in the population to that expected in the general population using Connecticut Tumor Registry calendar year, age, race and sex-specific rates. The standardized incidence ratio (SIR) for cancer overall was 0.91 (41 observed (O) and 44.94 expected (E); 95% Confidence Interval (CI) = 0.65-1.24). We observed a significant excess of colon cancer among the proband's first degree relatives (O/E = 5/1.64; 95% CI = 1.01-7.65), in particular those under age 45 year. Segregation analysis showed evidence for multifactorial inheritance in the small percentage (N = 5) of the families. ^
Resumo:
Among Mexican Americans, the second largest minority group in the United States, the prevalence of gallbladder disease is markedly elevated. Previous data from both genetic admixture and family studies indicate that there is a genetic component to the occurrence of gallbladder disease in Mexican Americans. However, prior to this thesis no formal genetic analysis of gallbladder disease had been carried out nor had any contributing genes been identified.^ The results of complex segregation analysis in a sample of 232 Mexican American pedigrees documented the existence of a major gene having two alleles with age- and gender-specific effects influencing the occurrence of gallbladder disease. The estimated frequency of the allele increasing susceptibility was 0.39. The lifetime probabilities that an individual will be affected by gallbladder disease were 1.0, 0.54, and 0.00 for females of genotypes "AA", "Aa", and "aa", respectively, and 0.68, 0.30, and 0.00 for males, respectively. This analysis provided the first conclusive evidence for the existence of a common single gene having a large effect on the occurrence of gallbladder disease.^ Human cholesterol 7$\alpha$-hydroxylase is the rate-limiting enzyme in bile acid synthesis. The results of an association study in both a random sample and a matched case/control sample showed that there is a significant association between cholesterol 7$\alpha$-hydroxylase gene variation and the occurrence of gallbladder disease in Mexican Americans males but not in females. These data have implicated a specific gene, 7$\alpha$-hydroxylase, in the etiology of gallbladder disease in this population.^ Finally, I asked whether the inferred major gene from complex segregation analysis is genetically linked to the cholesterol 7$\alpha$-hydroxylase gene. Three pedigrees predicted to be informative for linkage analysis by virtue of supporting the major gene hypothesis and having parents with informative genotypes and multiple offspring were selected for this linkage analysis. In each of these pedigrees, the recombination fractions maximized at 0 with a positive, albeit low, LOD score. The results of this linkage analysis provide preliminary and suggestive evidence that the cholesterol 7$\alpha$-hydroxylase gene and the inferred gallbladder disease susceptibility gene are genetically linked. ^
Resumo:
Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^
Resumo:
Sox9 is a Sry-related HMG-domain containing transcription factor. Lines of evidence suggest that Sox9 has a potential role in skeletal development. During mouse development, Sox9 is predominantly expressed in all chondroprogenitors and differentiated chondrocytes, throughout the deposition of cartilage matrix. Mutations in one allele of SOX9 in humans result in campomelic dysplasia (CD), a skeletal dysplasia. syndrome characterized by the bowing of long bones. Moreover, Sox9 binds to and activates chondrocyte-specific enhancers in Col2a1 and Col11a2 genes. To further investigate the function of Sox9 in chondrogenesis, we analyzed chimeras derived from Sox9 heterozygous and homozygous null embryonic stem (ES) cells. In mouse chimeras, Sox9 −/− cells were excluded from all cartilages and did not express chondrocyte-specific genes. The segregation occurred during mesenchymal condensation. No cartilages developed in teratocarcinomas derived from Sox9 −/− ES cells. Mice heterozygous for the Sox9 mutation died neonatally and exhibited skeletal abnormalities resembling those of the CD patients. The Sox9 +/− mutants had a cleft palate and hypoplasia of scapula, pelvis and other skeletal structures derived by endochondral ossification. Bending of the radius, ulna and tibia cartilage was prominent at embryonic day 14.5 (E14.5). At E12.5 many pre-cartilaginous condensations were already defective. Advanced ossification was observed and the hypertrophic zone was enlarged in the growth plates, suggesting that Sox9 also regulates hypertrophic chondrocyte differentiation. Our results identify Sox9 as the first essential regulator of chondrocyte differentiation, which plays multiple roles in chondrogenesis. ^