6 resultados para Segmentation of Solder Joint
em DigitalCommons@The Texas Medical Center
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
The joint modeling of longitudinal and survival data is a new approach to many applications such as HIV, cancer vaccine trials and quality of life studies. There are recent developments of the methodologies with respect to each of the components of the joint model as well as statistical processes that link them together. Among these, second order polynomial random effect models and linear mixed effects models are the most commonly used for the longitudinal trajectory function. In this study, we first relax the parametric constraints for polynomial random effect models by using Dirichlet process priors, then three longitudinal markers rather than only one marker are considered in one joint model. Second, we use a linear mixed effect model for the longitudinal process in a joint model analyzing the three markers. In this research these methods were applied to the Primary Biliary Cirrhosis sequential data, which were collected from a clinical trial of primary biliary cirrhosis (PBC) of the liver. This trial was conducted between 1974 and 1984 at the Mayo Clinic. The effects of three longitudinal markers (1) Total Serum Bilirubin, (2) Serum Albumin and (3) Serum Glutamic-Oxaloacetic transaminase (SGOT) on patients' survival were investigated. Proportion of treatment effect will also be studied using the proposed joint modeling approaches. ^ Based on the results, we conclude that the proposed modeling approaches yield better fit to the data and give less biased parameter estimates for these trajectory functions than previous methods. Model fit is also improved after considering three longitudinal markers instead of one marker only. The results from analysis of proportion of treatment effects from these joint models indicate same conclusion as that from the final model of Fleming and Harrington (1991), which is Bilirubin and Albumin together has stronger impact in predicting patients' survival and as a surrogate endpoints for treatment. ^
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
Medication reconciliation, with the aim to resolve medication discrepancy, is one of the Joint Commission patient safety goals. Medication errors and adverse drug events that could result from medication discrepancy affect a large population. At least 1.5 million adverse drug events and $3.5 billion of financial burden yearly associated with medication errors could be prevented by interventions such as medication reconciliation. This research was conducted to answer the following research questions: (1a) What are the frequency range and type of measures used to report outpatient medication discrepancy? (1b) Which effective and efficient strategies for medication reconciliation in the outpatient setting have been reported? (2) What are the costs associated with medication reconciliation practice in primary care clinics? (3) What is the quality of medication reconciliation practice in primary care clinics? (4) Is medication reconciliation practice in primary care clinics cost-effective from the clinic perspective? Study designs used to answer these questions included a systematic review, cost analysis, quality assessments, and cost-effectiveness analysis. Data sources were published articles in the medical literature and data from a prospective workflow study, which included 150 patients and 1,238 medications. The systematic review confirmed that the prevalence of medication discrepancy was high in ambulatory care and higher in primary care settings. Effective strategies for medication reconciliation included the use of pharmacists, letters, a standardized practice approach, and partnership between providers and patients. Our cost analysis showed that costs associated with medication reconciliation practice were not substantially different between primary care clinics using or not using electronic medical records (EMR) ($0.95 per patient per medication in EMR clinics vs. $0.96 per patient per medication in non-EMR clinics, p=0.78). Even though medication reconciliation was frequently practiced (97-98%), the quality of such practice was poor (0-33% of process completeness measured by concordance of medication numbers and 29-33% of accuracy measured by concordance of medication names) and negatively (though not significantly) associated with medication regimen complexity. The incremental cost-effectiveness ratios for concordance of medication number per patient per medication and concordance of medication names per patient per medication were both 0.08, favoring EMR. Future studies including potential cost-savings from medication features of the EMR and potential benefits to minimize severity of harm to patients from medication discrepancy are warranted. ^