4 resultados para Search engine results page

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To characterize PubMed usage over a typical day and compare it to previous studies of user behavior on Web search engines. DESIGN: We performed a lexical and semantic analysis of 2,689,166 queries issued on PubMed over 24 consecutive hours on a typical day. MEASUREMENTS: We measured the number of queries, number of distinct users, queries per user, terms per query, common terms, Boolean operator use, common phrases, result set size, MeSH categories, used semantic measurements to group queries into sessions, and studied the addition and removal of terms from consecutive queries to gauge search strategies. RESULTS: The size of the result sets from a sample of queries showed a bimodal distribution, with peaks at approximately 3 and 100 results, suggesting that a large group of queries was tightly focused and another was broad. Like Web search engine sessions, most PubMed sessions consisted of a single query. However, PubMed queries contained more terms. CONCLUSION: PubMed's usage profile should be considered when educating users, building user interfaces, and developing future biomedical information retrieval systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To determine the characteristics of popular breast cancer related websites and whether more popular sites are of higher quality. DESIGN: The search engine Google was used to generate a list of websites about breast cancer. Google ranks search results by measures of link popularity---the number of links to a site from other sites. The top 200 sites returned in response to the query "breast cancer" were divided into "more popular" and "less popular" subgroups by three different measures of link popularity: Google rank and number of links reported independently by Google and by AltaVista (another search engine). MAIN OUTCOME MEASURES: Type and quality of content. RESULTS: More popular sites according to Google rank were more likely than less popular ones to contain information on ongoing clinical trials (27% v 12%, P=0.01 ), results of trials (12% v 3%, P=0.02), and opportunities for psychosocial adjustment (48% v 23%, P<0.01). These characteristics were also associated with higher number of links as reported by Google and AltaVista. More popular sites by number of linking sites were also more likely to provide updates on other breast cancer research, information on legislation and advocacy, and a message board service. Measures of quality such as display of authorship, attribution or references, currency of information, and disclosure did not differ between groups. CONCLUSIONS: Popularity of websites is associated with type rather than quality of content. Sites that include content correlated with popularity may best meet the public's desire for information about breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following up genetic linkage studies to identify the underlying susceptibility gene(s) for complex disease traits is an arduous yet biologically and clinically important task. Complex traits, such as hypertension, are considered polygenic with many genes influencing risk, each with small effects. Chromosome 2 has been consistently identified as a genomic region with genetic linkage evidence suggesting that one or more loci contribute to blood pressure levels and hypertension status. Using combined positional candidate gene methods, the Family Blood Pressure Program has concentrated efforts in investigating this region of chromosome 2 in an effort to identify underlying candidate hypertension susceptibility gene(s). Initial informatics efforts identified the boundaries of the region and the known genes within it. A total of 82 polymorphic sites in eight positional candidate genes were genotyped in a large hypothesis-generating sample consisting of 1640 African Americans, 1339 whites, and 1616 Mexican Americans. To adjust for multiple comparisons, resampling-based false discovery adjustment was applied, extending traditional resampling methods to sibship samples. Following this adjustment for multiple comparisons, SLC4A5, a sodium bicarbonate transporter, was identified as a primary candidate gene for hypertension. Polymorphisms in SLC4A5 were subsequently genotyped and analyzed for validation in two populations of African Americans (N = 461; N = 778) and two of whites (N = 550; N = 967). Again, SNPs within SLC4A5 were significantly associated with blood pressure levels and hypertension status. While not identifying a single causal DNA sequence variation that is significantly associated with blood pressure levels and hypertension status across all samples, the results further implicate SLC4A5 as a candidate hypertension susceptibility gene, validating previous evidence for one or more genes on chromosome 2 that influence hypertension related phenotypes in the population-at-large. The methodology and results reported provide a case study of one approach for following up the results of genetic linkage analyses to identify genes influencing complex traits. ^