39 resultados para Sarcoma Osteogénico
em DigitalCommons@The Texas Medical Center
Resumo:
We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.
Resumo:
The K1 gene of Kaposi sarcoma-associated herpesvirus (KSHV) encodes a transmembrane glycoprotein bearing a functional immunoreceptor tyrosine-based activation motif (ITAM). Previously, we reported that the K1 protein induced plasmablastic lymphomas in K1 transgenic mice, and that these lymphomas showed enhanced Lyn kinase activity. Here, we report that systemic administration of the nuclear factor kappa B (NF-kappaB) inhibitor Bay 11-7085 or an anti-vascular endothelial growth factor (VEGF) antibody significantly reduced K1 lymphoma growth in nude mice. Furthermore, in KVL-1 cells, a cell line derived from a K1 lymphoma, inhibition of Lyn kinase activity by the Src kinase inhibitor PP2 decreased VEGF induction, NF-kappaB activity, and the cell proliferation index by 50% to 75%. In contrast, human B-cell lymphoma BJAB cells expressing K1, but not the ITAM sequence-deleted mutant K1, showed a marked increase in Lyn kinase activity with concomitant VEGF induction and NF-kappaB activation, indicating that ITAM sequences were required for the Lyn kinase-mediated activation of these factors. Our results suggested that K1-mediated constitutive Lyn kinase activation in K1 lymphoma cells is crucial for the production of VEGF and NF-kappaB activation, both strongly implicated in the development of KSHV-induced lymphoproliferative disorders.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV) is a recently discovered DNA tumor virus that belongs to the gamma-herpesvirus subfamily. Though numerous studies on KSHV and other herpesviruses, in general, have revealed much about their multilayered organization and capsid structure, the herpesvirus capsid assembly and maturation pathway remains poorly understood. Structural variability or irregularity of the capsid internal scaffolding core and the lack of adequate tools to study such structures have presented major hurdles to earlier investigations employing more traditional cryo-electron microscopy (cryoEM) single particle reconstruction. In this study, we used cryo-electron tomography (cryoET) to obtain 3D reconstructions of individual KSHV capsids, allowing direct visualization of the capsid internal structures and systematic comparison of the scaffolding cores for the first time. We show that B-capsids are not a structurally homogenous group; rather, they represent an ensemble of "B-capsid-like" particles whose inner scaffolding is highly variable, possibly representing different intermediates existing during the KSHV capsid assembly and maturation. This information, taken together with previous observations, has allowed us to propose a detailed pathway of herpesvirus capsid assembly and maturation.
Resumo:
Genetic and biochemical studies have suggested the existence of a bacteriophage-like, DNA-packaging/ejecting portal complex in herpesviruses capsids, but its arrangement remained unknown. Here, we report the first visualization of a unique vertex in the Kaposi's sarcoma-associated herpesvirus (KSHV) capsid by cryoelectron tomography, thus providing direct structural evidence for the existence of a portal complex in a gammaherpesvirus. This putative KSHV portal is an internally localized, umbilicated structure and lacks all of the external machineries characteristic of portals in DNA bacteriophages.
Resumo:
The Soehner-Dmochowski strain of murine sarcoma virus (MuSV-SD) was derived from a bone tumor of a New Zealand Black (NZB) rat infected with the Moloney strain of MuSV, which carries the gene encoding the v-mos protein. Serial passage of cell-free tumor extracts both decreased the latent period and resulted in osteosarcomas. Cells from a late passage tumor were established in culture, cell-free extracts frozen, and later inoculated into newborn NZB rats. One of the resulting bone tumors was established in culture and clonal cell lines derived, of which S4 was selected for the present study. The objectives of the study were two-fold: an examination of the genetic organization of MuSV-SD, and an examination of the biochemical characteristics of the viral proteins, since this is an acutely transforming virus which may yield insights into the mechanism of transformation caused by the v-mos protein. Blot hybridization of digested S4 genomic DNA reveals three candidate MuSV-SD integrated viral DNAs. The largest of these, MuSV-SD-6.5, was cloned from an S4 cosmid library, and the complete MuSV-SD-mos sequence was determined. The predicted amino acid sequence of the v-mos protein was compared to that of MuSV-124 and Ht-1, which show a 96.5% and 97.1% similarity, respectively. To characterize the MuSV-SD-mos protein further, immunochemical assays were performed using anti-mos antisera. The immunoblot analysis and immunoprecipitation assays demonstrated that similar levels of the v-mos protein were present in cells chronically infected with either MuSV-SD or MuSV-124; however, the immune complex kinase assay revealed greatly reduced in vitro serine kinase activity of the MuSV-SD-mos protein compared to that of MuSV-124. Sequence analysis demonstrated that the serine at amino acid residue 358 of the MuSV-SD-mos protein, like that of MuSV-Ht-1, had been mutated to a glycine. Mutations of this serine residue have been shown to affect the detectable in vitro kinase activity, however, v-mos proteins containing this mutation still retain transforming properties. Therefore, although the characteristic in vitro kinase activity of the MuSV-SD-mos protein has not been demonstrated, it is clear that this virus is a potent transforming agent. ^
Resumo:
By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^
Resumo:
Murine sarcoma viruses constitute a class of replication-defective retroviruses. Cellular transformation may be induced by these viruses in vitro; whereas, fibrosarcomas may result in animals infected with them in vivo (Tooze, 1973; Bishop, 1978). Hybridization studies suggest that murine sarcoma viruses arose by recombination between nondefective murine leukemia virus sequences and certain cellular sequences present in uninfected mouse cells (Hu et al., 1977). A specific gene product, however, has not been implicated in murine sarcoma virus transformation.^ One line of murine sarcoma virus-producing cells, Mo-MuSV-clone 124, (Ball et al., 1973), was studied biochemically because it mainly produces the sarcoma virus as a pseudotype packaged with helper murine leukemia virus proteins. The sarcoma viral RNA was translated in a sophisticated cell-free protein synthesizing system (Murphy and Arlinghaus, 1978). The translation products were analyzed by a number of techniques, including electrophoresis in denaturing gels of SDS polyacrylamide, immunoprecipitation, and peptide mapping. The major products of the total RNA purified from the virus preparation were shown to have molecular weights of about 63,000 (P63('gag)), 42,000 (P42), 40,000 (P40), 38,000 (P38), and 23,000 (P23). The size class of mRNA coding for each of the cell-free products was estimated using a poly(A) selection technique and sucrose gradient fractionation. These analyses were used to localize the coding information related to each of the in vitro synthesized cell-free products within the sarcoma virus genome.^ The major findings of these studies were: (1) the 5' half of the sarcoma viral RNA codes for the 63,000 dalton polypeptide and 42,000 - 38,000 dalton polypeptides derived from the "gag" gene; and (2) the 3' half of the sarcoma viral RNA codes for a 38,000 dalton polypeptide and possibly derived from the cellular acquired sequences. ^
Resumo:
The viral proteins synthesized by a Moloney murine sarcoma virus (Mo-MuSV) with a temperature-sensitive mutation in a function required for the maintenance of the transformed state (ts110) were examined. Normal rat kidney cells (NRK) were infected with the ts110 virus and a non-virus-producing cell clone, termed 6m2, was isolated. This cell clone had a malignant phenotype at 33(DEGREES), the permissive temperature, but changed to a normal phenotype at 39(DEGREES).^ Two viral proteins were detected in 6m2 cells. A 58,000 dalton protein (P58) was detected at both 33(DEGREES) and 39(DEGREES) and contained only core protein (gag) coded sequences. An 85,000 dalton protein (P85) was detected only at 33(DEGREES) and contained sequences of viral core proteins p15, pp12, and part of p30 as well as protein sequences attributed by peptide mapping to P23 and P38, two candidate viral mouse src (v-mos) gene products. These results provide good evidence that P85 is a gag-mos polyprotein. As expected for a functional mos-gene product, P85 synthesis preceded parameters characteristic of the transformed state, including changes in cell morphology, in the cytoplasmic microtubule complex (CMTC) and in the rate of hexose uptake.^ Other studies were conducted to ascertain the defect which prohibited the synthesis of P85 at 39(DEGREES), the non-permissive temperature. When 6m2 cells were treated with actinomycin D at 39(DEGREES) and shifted to 33(DEGREES), the cells were unable to synthesize P85, but P58 continued to be made. P85 mRNA, active at 33(DEGREES), continued to be translated for two to three hours after shifting to 39(DEGREES) as judged by pulse-labeling experiments. Virus harvested at 33(DEGREES) from ts110 MuSV producer cells packaged both P85 and P58 coding RNAs while virus harvested at 39(DEGREES) was deficient in the amount of P85 coding RNA. Agarose gel electrophoresis of 6m2 cellular RNA showed that RNA harvested at 33(DEGREES) contained the 4.0 and 3.5 kb RNAs. Similar experiments on cells maintained at 39(DEGREES) have detected only the 4.0 kb RNA, suggesting that the 3.5 kb RNA codes for P85. The defect appeared to be in the long term stability of the P85 coding RNA at 39(DEGREES), since, in shift-up experiments (33(DEGREES) (--->) 39(DEGREES)), P85 was translated for only three hours at 39(DEGREES), while P58 was synthesized for at least eight hours. However, at 33(DEGREES) in the presence of actinomycin D, the ratio of P85 and P58 synthesis at hourly intervals was similar throughout a 12 hour period. ^
Resumo:
Various Moloney murine sarcoma virus (Mo-MuSV) isolates contain a cellular sequence, termed mos, which is responsible for the transforming ability of Mo-MuSV. A serine kinase activity has been found to be associated with mos gene products of several isolates of Mo-MuSV. A mutant of Mo-MuSV strain 124 (designated MuSV ts110) is temperature-sensitive (ts) for transformation and encodes two proteins, P85('gag-mos) (an 85,000 M(,r) protein encoded by the gag and mos genes) and P58('gag), at the permissive temperature (28(DEGREES)C). At the nonpermissive temperature (39(DEGREES)C), only P58('gag) is found in MuSV ts110-infected NRK cells (6m2 cells). Both P85('gag-mos) and P58('gag) were phosphorylated when anti-gag immune complexes containing these proteins were incubated at 22(DEGREES)C with (lamda)-('32)P -ATP and MnCl(,2). The kinase detected in anti-gag complexes from 6m2 cells at permissive temperature was associated with P85('gag-mos) since immune complexes from 39(DEGREES)C 6m2 cells, which lack P85('gag-mos), produced no phosphorylated P58('gag) molecules. In addition, an anti-mos complex (anti-mos 37-55 complexes) allowed in vitro phosphorylation of P85('gag-mos) in the absence of P58('gag). No kinase activity was detectable with other gag gene products (e.g., Mo-MuSV-124 P62('gag)), suggesting that the P85('gag-mos) kinase activity was present within the mos portion of the protein. The P85('gag-mos) kinase activity was very thermolabile upon shifting 6m2 cells from permissive to nonpermissive temperatures (t(, 1/2) for inactivation = 5 min). In contrast, a spontaneous revertant of MuSV ts110 encodes a larger gag-mos protein (termed P100('gag-mos)) which contained a kinase activity stable to 39(DEGREES)C. Using the optimal conditions developed for the P85('gag-mos) kinase, Mo-MuSV-encoded p37('mos) was also found to be associated with a serine kinase activity. Phosphorylation of p37('mos) and a 43 Kd protein (super-phosphorylated p37('mos)) occurred in anti-mos(37-55) complexes from Mo-MuSV-124 acutely-infected NIH 3T3 cells, but neither in mos 37-55 peptide-blocked anti-mos(37-55) complexes nor in immune complexes from uninfected NIH 3T3 cells. Antibodies directed against the C-terminus of v-mos were found to inhibit the in vitro phosphorylation of p37('mos), suggesting that the extreme C-terminal sequence of v-mos may be important for an intrinsic kinase activity. This inhibitory action by antibodies to the C-terminus of p37('mos), when considered with all the other data reported here, provides convincing evidence that the v-mos gene encodes a serine protein kinase activity. ^
Resumo:
Cells infected with a temperature sensitive phenotypic mutant of Moloney sarcoma virus (MuSVts110) exhibit a transformed phenotype at 33('(DEGREES)) and synthesize two virus specific proteins, p85('gag-mos), a gag-mos fusion protein and p58('gag), a truncated gag precursor protein (the gag gene codes for viral structural proteins and mos is the MuSV transforming gene). At 39('(DEGREES)) only p58('gag) is synthesized and the morphology of the cells is similar to uninfected NRK parental cells. Two MuSVts110 specific RNAs are made in MuSVts110-infected cells, one of 4.0 kb in length, the other of 3.5 kb. Previous work indicated that each of these RNAs arose by a single central deletion of parental MuSV genetic material, and that p58('gag) was made by the 4.0 kb RNA and p85('gag-mos) from the 3.5 kb RNA. The objective of my dissertation research was to map precisely the deletion boundaries of both of the MuSVts110 RNAs, and to determine the proper reading frame across both deletion borders. This work succeeded in arriving at the following conclusions: (a) Using S-1 nuclease analysis and primer extension sequencing, it was found that the 4.0 kb MuSVts110 RNA arose by a 1488 base deletion of 5.2 kb parental MuSV genomic RNA. This deletion resulted in an out of frame fusion of the gag and mos genes that resulted in the formation of a "stop" codon which causes termination of translation just beyond the c-terminus of the gag region. Thus, this RNA can only be translated into the truncated gag protein p58('gag). (b) S-1 analysis of RNA from cells cultivated at different temperatures demonstrated that the 4.0 kb RNA was synthesized at all temperatures but that synthesis of the 3.5 kb RNA was temperature sensitive. These observations supported the data derived from blot hybridization experiments the interpretation of which argued for the existence of a single provirus in MuSVts110 infected cells, and hence only a single primary transcript (the 4.0 kb RNA). (c) Analyses similar to those described in (a) above showed that the 3.5 kb RNA was derived from the 4.0 kb MuSVts110 RNA by a further deletion of 431 bases, fusing the gag and mos genes into a continuous reading frame capable of directing synthesis of the p85('gag-mos) protein. These sequence data and the presence of only one MuSVts110-specific provirus, indicate that a splice mechanism is employed to generate the 3.5 kb RNA since the gag and mos genes are observed to be fused in frame in this RNA. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Vasculogenesis is the process by which Endothelial Precursor Cells (EPCs) form a vasculature. This process has been traditionally regarded as an embryological process of vessel formation. However, as early as in the 60's the concept of postnatal vasculogenesis was introduced, with a strong resurface of this idea in recent years. Similarly, previous work on a mouse skin tumor model provided us with the grounds to consider the role of vasculogenesis during tumor formation. ^ We examined the contribution of donor bone marrow (BM)-derived cells to neovascularization in recipient nude mice with Ewing's sarcoma. Ewing's sarcoma is a primitive neuroectodermal tumor that most often affects children and young adults between 5 and 30 years of age. Despite multiple attempts to improve the efficacy of chemotherapy for the disease, the 2-year metastases-free survival rate for patients with Ewing's sarcoma has not improved over the past 15 years. New therapeutic approaches are therefore needed to reduce the mortality rate. ^ The contribution of BM endothelial precursor cells in the development of Ewing's sarcoma was examined using different strategies to track the donor-derived cells. Using a BMT model that takes advantage of MHC differences between donor and recipient mice, we have found that donor BM cells were involved in the formation of Ewing's sarcoma vasculature. ^ Cells responsible for this vasculogenesis activity may be located within the stem cell population of the murine BM. These stem cells would not only generate the hematopoietic lineage but they would also generate ECs. Bone marrow SP (Side Population) cells pertain to a subpopulation that can be identified using flow cytometric analysis of Hoechst 33342-stained BM. This population of cells has HSC activity. We have tested the ability of BM SP cells to contribute to vasculogenesis in Ewing's sarcoma using our MHC mismatched transplant model. Mice transplanted with SP cells developed tumor neovessels that were derived from the donor SP cells. Thus, SP cells not only replenished the hematopoietic system of the lethally irradiated mice, but also differentiated into a non-hematopoietic cell lineage and contributed to the formation of the tumor vasculature. ^ In summary, we have demonstrated that BM-derived cells are involved in the generation of the new vasculature during the growth of Ewing's sarcoma. The finding that vasculogenesis plays a role in Ewing's sarcoma development opens the possibility of using genetically modified BM-derived cells for the treatment of Ewing's sarcomas. ^
Resumo:
The tumor suppressor p16 is a negative regulator of the cell cycle, and acts by preventing the phosphorylation of RB, which in turn prevents the progression from G1 to S phase of the cell cycle. In addition to its role in the cell cycle, p16 may also be able to induce apoptosis in some tumors. Ewing's sarcoma, a pediatric cancer of the bone and soft tissue, was used to study the ability of p16 to induce apoptosis due to the fact that p16 is often deleted in Ewing's sarcoma tumors and may play a role in the oncogenesis or progression of this disease. The purpose of these studies was to determine whether introduction of p16 into Ewing's sarcoma cells would induce apoptosis. We infected the Ewing's sarcoma cell line TC71, which does not express p16, with adenovirus- p16 (Ad-p16). Ad-p16 infection led to the production of functional p16 as measured by the induction of G1 arrest. Ad-p16 infection induced as much as a 100% increase in G1 arrest compared to untreated cells. As measured by propidium iodide (PI) and Annexin V staining, Ad-p16 was able to induce apoptosis to levels 20–30 fold higher than controls. Furthermore, Ad-p16 infection led to loss of RB protein before apoptosis could be detected. The loss of RB protein was due to post-translational degradation of RB, which was inhibited by the addition of the proteasome inhibitors PS-341 and NPI-0052. Downregulation of RB with si-RNA sensitized cells to Ad-p16-induced apoptosis, indicating that RB protects from apoptosis in this model. This study shows that p16 leads to the degradation of RB by the ubiquitin/proteasome pathway, and that this degradation may be important for the induction of apoptosis. Given that RB may protect from apoptosis in some tumors, apoptosis-inducing therapies may be enhanced in tumors which have lost RB expression, or in which RB is artificially inactivated. ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^