1 resultado para San Pablo Bay

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because of its simplicity and low cost, arm circumference (AC) is being used increasingly in screening for protein energy malnutrition among pre-school children in many parts of the developing world, especially where minimally trained health workers are employed. The objectives of this study were as follows: (1) To determine the relationship of the AC measure with weight for age and weight for height in the detection of malnutrition among pre-school children in a Guatemalan Indian village. (2) To determine the performance of minimally trained promoters under field conditions in measuring AC, weight and height. (3) To describe the practical aspects of taking AC measures versus weight, age and height.^ The study was conducted in San Pablo La Laguna, one of four villages situated on the shores of Lake Atitlan, Guatemala, in which a program of simplified medical care was implemented by the Institute for Nutrition for Central America and Panama (INCAP). Weight, height, AC and age data were collected for 144 chronically malnourished children. The measurements obtained by the trained investigator under the controlled conditions of the health post were correlated against one another and AC was found to have a correlation with weight for age of 0.7127 and with weight for height of 0.7911, both well within the 0.65 to 0.80 range reported in the literature. False positive and false negative analysis showed that AC was more sensitive when compared with weight for height than with weight for age. This was fortunate since, especially in areas with widespread chronic malnutrition, weight for height detects those acute cases in immediate danger of complicating illness or death. Moreover, most of the cases identified as malnourished by AC, but not by weight for height (false positives), were either young or very stunted which made their selection by AC better than weight for height. The large number of cases detected by weight for age, but not by AC (false negative rate--40%) were, however, mostly beyond the critical age period and had normal weight for heights.^ The performance of AC, weight for height and weight for age under field conditions in the hands of minimally trained health workers was also analyzed by correlating these measurements against the same criterion measurements taken under ideally controlled conditions of the health post. AC had the highest correlation with itself indicating that it deteriorated the least in the move to the field. Moreover, there was a high correlation between AC in the field and criterion weight for height (0.7509); this correlation was almost as high as that for field weight for height versus the same measure in the health post (0.7588). The implication is that field errors are so great for the compounded weight for height variable that, in the field, AC is about as good a predictor of the ideal weight for height measure.^ Minimally trained health workers made more errors than the investigator as exemplified by their lower intra-observer correlation coefficients. They consistently measured larger than the investigator for all measures. Also there was a great deal of variability between these minimally trained workers indicating that careful training and followup is necessary for the success of the AC measure.^ AC has many practical advantages compared to the other anthropometric tools. It does not require age data, which are often unreliable in these settings, and does not require sophisticated subtraction and two dimensional table-handling skills that weight for age and weight for height require. The measure is also more easily applied with less disturbance to the child and the community. The AC tape is cheap and not easily damaged or jarred out of calibration while being transported in rugged settings, as is often the case with weight scales. Moreover, it can be kept in a health worker's pocket at all times for continual use in a widespread range of settings. ^