22 resultados para SYNAPTIC CONNECTIVITY

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation. In this paper, I show that one of the most studied neuronal pairs in the Drosophila nerve cord, RP2/sib, has a complicated migratory route. Based on my studies on Wingless (Wg) signaling, I report that the neuronal migratory pattern is determined at the precursor cell stage level. The results show that Wg activity in the precursor neuroectodermal and neuroblast levels specify neuronal migratory pattern two divisions later, thus, well ahead of the actual migratory event. Moreover, at least two downstream genes, Cut and Zfh1, are involved in this process but their role is at the downstream neuronal level. The functional importance of normal neuronal migration and the requirement of Wg signaling for the process are indicated by the finding that mislocated RP2 neurons in embryos mutant for Wg-signaling fail to properly send out their axon projection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinal ganglion cells carry signals from the eye to the brain. One of the most common types of ganglion cells is parasol cells. They have larger dendritic trees, somas and axons than other ganglion cells. While much was known about parasol cell light responses, little was known about how these responses are formed. One possibility is that they receive input from a unique set of local circuit neurons that have similar responses. The goal was to identify these presynaptic neurons and study their synaptic connectivity.^ Ganglion cells receive input from bipolar and amacrine cells, but there are numerous subtypes of each. To determine which of these were most likely to provide input to parasol cells, the parasol cells were intracellularly-injected and then various bipolar and amacrine cells were immunolabeled and the tissue analyzed using a confocal microscope. DB3 bipolar cells labeled with antibodies to calbindin made extensive contacts with OFF parasol cells. Antibodies to recover in labeled flat midget bipolar cells (FMB). They made only random contacts with OFF parasol cells, and they are not expected to provide significant input. Type DB2 bipolar cells and FMB cells labeled with antibodies to excitatory amino acid transporter-2 made extensive contacts with OFF parasol cells. This suggests that DB2 bipolar cells are likely to provide input to parasol cells.^ Two types of amacrine cells were labeled in material containing injected parasol cells. Cholinergic amacrine cells were labeled with antibodies to choline acetyltransferase, and they made extensive contacts with ON parasol cells. The large amacrine cells labeled with antibodies to a precursor of cholecystokinin were among the amacrine cells that are tracer-coupled to parasol cells.^ From electron microscopic (EM) analysis, most of the synapses made by DB3 axons were found on varicosities. Some postsynaptic and presynaptic amacrine cells resembled AII amacrine cells. Others were relatively electron-lucent and may be cholinergic amacrine cells or cholecystokinin-containing amacrine cells. Gap junctions were found between neighboring DB3 axons. They occurred whenever two axons contacted each other, and the junctions were as large as the area of contact. In double-label EM experiments, DB3 axons made synapses onto OFF parasol cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrins comprise a large family of cell adhesion receptors that mediate diverse biological events through cell-cell and cell-extracellular matrix interactions. Recent studies have shown that several integrins are localized to synapses with suggested roles in synaptic plasticity and memory formation. We generated a postnatal forebrain and excitatory neuron-specific knock-out of beta1-integrin in the mouse. Electrophysiological studies demonstrated that these mutants have impaired synaptic transmission through AMPA receptors and diminished NMDA receptor-dependent long-term potentiation. Despite the impairment in hippocampal synaptic transmission, the mutants displayed normal hippocampal-dependent spatial and contextual memory but were impaired in a hippocampal-dependent, nonmatching-to-place working memory task. These phenotypes parallel those observed in animals carrying knock-outs of the GluR1 (glutamate receptor subunit 1) subunit of the AMPA receptor. These observations suggest a new function of beta1-integrins as regulators of synaptic glutamate receptor function and working memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity-dependent alterations of synaptic transmission important for learning and memory are often induced by Ca(2+) signals generated by depolarization. While it is widely assumed that Ca(2+) is the essential transducer of depolarization into cellular plasticity, little effort has been made to test whether Ca(2+)-independent responses to depolarization might also induce memory-like alterations. It was recently discovered that peripheral axons of nociceptive sensory neurons in Aplysia display long-lasting hyperexcitability triggered by conditioning depolarization in the absence of Ca(2+) entry (using nominally Ca(2+)-free solutions containing EGTA, "0Ca/EGTA") or the absence of detectable Ca(2+) transients (adding BAPTA-AM, "0Ca/EGTA/BAPTA-AM"). The current study reports that depolarization of central ganglia to approximately 0 mV for 2 min in these same solutions induced hyperexcitability lasting >1 h in sensory neuron processes near their synapses onto motor neurons. Furthermore, conditioning depolarization in these solutions produced a 2.5-fold increase in excitatory postsynaptic potential (EPSP) amplitude 1-3 h afterward despite a drop in motor neuron input resistance. Depolarization in 0 Ca/EGTA produced long-term potentiation (LTP) of the EPSP lasting > or = 1 days without changing postsynaptic input resistance. When re-exposed to extracellular Ca(2+) during synaptic tests, prior exposure to 0Ca/EGTA or to 0Ca/EGTA/BAPTA-AM decreased sensory neuron survival. However, differential effects on neuronal health are unlikely to explain the observed potentiation because conditioning depolarization in these solutions did not alter survival rates. These findings suggest that unrecognized Ca(2+)-independent signals can transduce depolarization into long-lasting synaptic potentiation, perhaps contributing to persistent synaptic alterations following large, sustained depolarizations that occur during learning, neural injury, or seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to represent time is an essential component of cognition but its neural basis is unknown. Although extensively studied both behaviorally and electrophysiologically, a general theoretical framework describing the elementary neural mechanisms used by the brain to learn temporal representations is lacking. It is commonly believed that the underlying cellular mechanisms reside in high order cortical regions but recent studies show sustained neural activity in primary sensory cortices that can represent the timing of expected reward. Here, we show that local cortical networks can learn temporal representations through a simple framework predicated on reward dependent expression of synaptic plasticity. We assert that temporal representations are stored in the lateral synaptic connections between neurons and demonstrate that reward-modulated plasticity is sufficient to learn these representations. We implement our model numerically to explain reward-time learning in the primary visual cortex (V1), demonstrate experimental support, and suggest additional experimentally verifiable predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decades of research on the cellular mechanisms of memory have led to the widely held view that memories are stored as modifications of synaptic strength. These changes involve presynaptic processes, such as direct modulation of the release machinery, or postsynaptic processes, such as modulation of receptor properties. Parallel studies have revealed that memories might also be stored by nonsynaptic processes, such as modulation of voltage-dependent membrane conductances, which are expressed as changes in neuronal excitability. Although in some cases nonsynaptic changes can function as part of the engram itself, they might also serve as mechanisms through which a neural circuit is set to a permissive state to facilitate synaptic modifications that are necessary for memory storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribbon synapses of the vertebrate retina are specialized synapses that release neurotransmitter by synaptic vesicle exocytosis in a manner that is proportional to the level of depolarization of the cell. This release property is different from conventional neurons, in which the release of neurotransmitter occurs as a short-lived burst triggered by an action potential. Synaptic vesicle exocytosis is a calcium regulated process that is dependent on a set of interacting synaptic proteins that form the so-called SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex. Syntaxin 3B has been identified as a specialized SNARE molecule in ribbon synapses of the rodent retina. However, the best physiologically-characterized neuron that forms ribbon-style synapses is the rod-dominant or Mb1 bipolar cell of the goldfish retina. We report here the molecular characterization of syntaxin 3B from the goldfish retina. Using a combination of reverse transcription (RT) polymerase chain reaction (PCR) and immunostaining with a specific antibody, we show that syntaxin 3B is highly enriched in the plasma membrane of bipolar cell synaptic terminals of the goldfish retina. Using membrane capacitance measurements we demonstrate that a peptide derived from goldfish syntaxin 3B inhibits synaptic vesicle exocytosis. These experiments demonstrate that syntaxin 3B is an important factor for synaptic vesicle exocytosis in ribbon synapses of the vertebrate retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Synaptic plasticity underlies many aspect of learning memory and development. The properties of synaptic plasticity can change as a function of previous plasticity and previous activation of synapses, a phenomenon called metaplasticity. Synaptic plasticity not only changes the functional connectivity between neurons but in some cases produces a structural change in synaptic spines; a change thought to form a basis for this observed plasticity. Here we examine to what extent structural plasticity of spines can be a cause for metaplasticity. This study is motivated by the observation that structural changes in spines are likely to affect the calcium dynamics in spines. Since calcium dynamics determine the sign and magnitude of synaptic plasticity, it is likely that structural plasticity will alter the properties of synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS: In this study we address the question how spine geometry and alterations of N-methyl-D-aspartic acid (NMDA) receptors conductance may affect plasticity. Based on a simplified model of the spine in combination with a calcium-dependent plasticity rule, we demonstrated that after the induction phase of plasticity a shift of the long term potentiation (LTP) or long term depression (LTD) threshold takes place. This induces a refractory period for further LTP induction and promotes depotentiation as observed experimentally. That resembles the BCM metaplasticity rule but specific for the individual synapse. In the second phase, alteration of the NMDA response may bring the synapse to a state such that further synaptic weight alterations are feasible. We show that if the enhancement of the NMDA response is proportional to the area of the post synaptic density (PSD) the plasticity curves most likely return to the initial state. CONCLUSIONS/SIGNIFICANCE: Using simulations of calcium dynamics in synaptic spines, coupled with a biophysically motivated calcium-dependent plasticity rule, we find under what conditions structural plasticity can form the basis of synapse specific metaplasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal place cells in the rat undergo experience-dependent changes when the rat runs stereotyped routes. One such change, the backward shift of the place field center of mass, has been linked by previous modeling efforts to spike-timing-dependent plasticity (STDP). However, these models did not account for the termination of the place field shift and they were based on an abstract implementation of STDP that ignores many of the features found in cortical plasticity. Here, instead of the abstract STDP model, we use a calcium-dependent plasticity (CaDP) learning rule that can account for many of the observed properties of cortical plasticity. We use the CaDP learning rule in combination with a model of metaplasticity to simulate place field dynamics. Without any major changes to the parameters of the original model, the present simulations account both for the initial rapid place field shift and for the subsequent slowing down of this shift. These results suggest that the CaDP model captures the essence of a general cortical mechanism of synaptic plasticity, which may underlie numerous forms of synaptic plasticity observed both in vivo and in vitro.