3 resultados para SURGICAL SITE INFECTIONS
em DigitalCommons@The Texas Medical Center
Resumo:
Background: Surgical site infections (SSIs) after abdominal surgeries account for approximately 26% of all reported SSIs. The Center for Disease Control and Prevention (CDC) defines 3 types of SSIs: superficial incisional, deep incisional, and organ/space. Preventing SSIs has become a national focus. This dissertation assesses several associations with the individual types of SSI in patients that have undergone colon surgery. ^ Methods: Data for this dissertation was obtained from the American College of Surgeons' National Surgical Quality Improvement Program (NSQIP); major colon surgeries were identified in the database that occurred between the time period of 2007 and 2009. NSQIP data includes more than 50 preoperative and 30 intraoperative factors; 40 collected postoperative occurrences are based on a follow-up period of 30 days from surgery. Initially, four individual logistic regressions were modeled to compare the associations between risk factors and each of the SSI groups: superficial, deep, organ/space and a composite of any single SSI. A second analysis used polytomous regression to assess simultaneously the associations between risk factors and the different types of SSIs, as well as, formally test the different effect estimates of 13 common risk factors for SSIs. The final analysis explored the association between venous thromboembolism (VTEs) and the different types of SSIs and risk factors. ^ Results: A total of 59,365 colon surgeries were included in the study. Overall, 13% of colon cases developed a single type of SSI; 8% of these were superficial SSIs, 1.4% was deep SSIs, and 3.8% were organ/space SSIs. The first article identifies the unique set of risk factors associated with each of the 4 SSI models. Distinct risk factors for superficial SSIs included factors, such as alcohol, chronic obstructive pulmonary disease, dyspnea and diabetes. Organ/space SSIs were uniquely associated with disseminated cancer, preoperative dialysis, preoperative radiation treatment, bleeding disorder and prior surgery. Risk factors that were significant in all models had different effect estimates. The second article assesses 13 common SSI risk factors simultaneously across the 3 different types of SSIs using polytomous regression. Then each risk factor was formally tested for the effect heterogeneity exhibited. If the test was significant the final model would allow for the effect estimations for that risk factor to vary across each type of SSI; if the test was not significant, the effect estimate would remain constant across the types of SSIs using the aggregate SSI value. The third article explored the relationship of venous thromboembolism (VTE) and the individual types of SSIs and risk factors. The overall incidence of VTEs after the 59,365 colon cases was 2.4%. All 3 types of SSIs and several risk factors were independently associated with the development of VTEs. ^ Conclusions: Risk factors associated with each type of SSI were different in patients that have undergone colon surgery. Each model had a unique cluster of risk factors. Several risk factors, including increased BMI, duration of surgery, wound class, and laparoscopic approach, were significant across all 4 models but no statistical inferences can be made about their different effect estimates. These results suggest that aggregating SSIs may misattribute and hide true associations with risk factors. Using polytomous regression to assess multiple risk factors with the multiple types of SSI, this study was able to identify several risk factors that had significant effect heterogeneity across the 3 types of SSI challenging the use of aggregate SSI outcomes. The third article recognizes the strong association between VTEs and the 3 types of SSIs. Clinicians understand the difference between superficial, deep and organ/space SSIs. Our results indicate that they should be considered individually in future studies.^
Resumo:
Background. Surgical site infections (SSI) are one of the most common nosocomial infections in the United States. This study was conducted following an increase in the rate of SSI following spinal procedures at the study hospital. ^ Methods. This study examined patient and hospital associated risk factors for SSI using existing data on patients who had spinal surgery performed at the study hospital between December 2003 and August 2005. There were 59 patients with SSI identified as cases; controls were randomly selected from patients who had spinal procedures performed at the study hospital during the study period, but did not develop infection. Of the 245 original records reviewed, 5% were missing more than half the variables and were eliminated from the data set. A total of 234 patients were included in the final analysis, representing 55 cases and 179 controls. Multivariable analysis was conducted using logistic regression to control for confounding variables. ^ Results. Three variables were found to be significant risk factors for SSI in the study population: presence of comorbidities (odds ratio 3.15, 95% confidence interval 1.20 to 8.26), cut time above the population median of 100 minutes (odds ratio 2.98, 95% confidence interval 1.12 to 5.49), and use of iodine only for preoperative skin antisepsis (odds ratio 0.16, 95% confidence interval 0.06 to 0.45). Several risk factors of specific concern to the study hospital, such as operating room, hospital staff involved in the procedures and workers' compensation status, were not shown to be statistically significant. In addition, multiple factors that have been identified in prior studies, such as method of hair removal, smoking status, or incontinence, were not shown to be statistically significant in this population. ^ Conclusions. This study confirms that increased cut time is a risk for post-operative infection. Use of iodine only was found to decrease risk of infection; further study is recommended in a population with higher usage of chlorhexadine gluconate. Presence of comorbidities at the time of surgery was also found to be a risk factor for infection; however, specific comorbidities were not studied. ^
Resumo:
Unlike infections occurring during periods of chemotherapy-induced neutropenia, postoperative infections in patients with solid malignancy remain largely understudied. The purpose of this population-based study was to evaluate the clinical and economic burden, as well as the relationship of hospital surgical volume and outcomes associated with serious postoperative infection (SPI) – i.e., bacteremia/sepsis, pneumonia, and wound infection – following resection of common solid tumors.^ From the Texas Discharge Data Research File, we identified all Texas residents who underwent resection of cancer of the lung, esophagus, stomach, pancreas, colon, or rectum between 2002 and 2006. From their billing records, we identified ICD-9 codes indicating SPI and also subsequent SPI-related readmissions occurring within 30 days of surgery. Random-effects logistic regression was used to calculate the impact of SPI on mortality, as well as the association between surgical volume and SPI, adjusting for case-mix, hospital characteristics, and clustering of multiple surgical admissions within the same patient and patients within the same hospital. Excess bed days and costs were calculated by subtracting values for patients without infections from those with infections computed using multilevel mixed-effects generalized linear model by fitting a gamma distribution to the data using log link.^ Serious postoperative infection occurred following 9.4% of the 37,582 eligible tumor resections and was independently associated with an 11-fold increase in the odds of in-hospital mortality (95% Confidence Interval [95% CI], 6.7-18.5, P < 0.001). Patients with SPI required 6.3 additional hospital days (95% CI, 6.1 - 6.5) at an incremental cost of $16,396 (95% CI, $15,927–$16,875). There was a significant trend toward lower overall rates of SPI with higher surgical volume (P=0.037). ^ Due to the substantial morbidity, mortality, and excess costs associated with SPI following solid tumor resections and given that, under current reimbursement practices, most of this heavy burden is borne by acute care providers, it is imperative for hospitals to identify more effective prophylactic measures, so that these potentially preventable infections and their associated expenditures can be averted. Additional volume-outcomes research is also needed to identify infection prevention processes that can be transferred from higher- to lower-volume providers.^