8 resultados para SPIKES

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriophage BPP-1, which infects Bordetella species, can switch its specificity by mutations to the ligand-binding surface of its major tropism-determinant protein, Mtd. This targeted mutagenesis results from the activity of a phage-encoded diversity-generating retroelement. Purified Mtd binds its receptor with low affinity, yet BPP-1 binding and infection of Bordettella cells are efficient because of high-avidity binding between phage-associated Mtd and its receptor. Here, using an integrative approach of three-dimensional (3D) structural analyses of the entire phage by cryo-electron tomography and single-prticle cryo-electron microscopy, we provide direct localization of Mtd in the phage and the structural basis of the high-avidity binding of the BPP-1 phage. Our structure shows that each BPP-1 particle has a T = 7 icosahedral head and an unusual tail apparatus consisting of a short central tail "hub," six short tail spikes, and six extended tail fibers. Subtomographic averaging of the tail fiber maps revealed a two-lobed globular structure at the distal end of each long tail fiber. Tomographic reconstructions of immuno-gold-labeled BPP-1 directly localized Mtd to these globular structures. Finally, our icosahedral reconstruction of the BPP-1 head at 7A resolution reveals an HK97-like major capsid protein stabilized by a smaller cementing protein. Our structure represents a unique bacteriophage reconstruction with its tail fibers and ligand-binding domains shown in relation to its tail apparatus. The localization of Mtd at the distal ends of the six tail fibers explains the high avidity binding of Mtd molecules to cell surfaces for initiation of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Pavlovian-conditioning procedure may produce modifications in multiple behavioral responses. As an example, conditioning may result in the elicitation of a specific somatomotor conditioned response (CR) and, in addition, other motor and visceral CRs. In the mollusk Hermissenda conditioning produces two conditioned responses: foot-shortening and decreased locomotion. The neural circuitry supporting ciliary locomotion is well characterized, although the neural circuit underlying foot-shortening is poorly understood. Here we describe efferent neurons in the pedal ganglion that produce contraction or extension of specific regions of the foot in semi-intact preparations. Synaptic connections between polysensory type Ib and type Is interneurons and identified foot contractile efferent neurons were examined. Type Ib and type Is interneurons receive synaptic input from the visual, graviceptive, and somatosensory systems. Depolarization of type Ib interneurons evoked spikes in identified tail and lateral foot contractile efferent neurons. Mechanical displacement of the statocyst evoked complex excitatory postsynaptic potentials (EPSPs) and spikes recorded from type Ib and type Is interneurons and complex EPSPs and spikes in identified foot contractile efferent neurons. Depolarization of type Ib interneurons in semi-intact preparations produced contraction and shortening along the rostrocaudal axis of the foot. Depolarization of Is interneurons in semi-intact preparations produced contraction of the anterior region of the foot. Taken collectively, the results suggest that type Ib and type Is polysensory interneurons may contribute to the neural circuit underlying the foot-shortening CR in Hermissenda.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spike timing dependent plasticity (STDP) is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in synaptic strength. STDP is often interpreted as the comprehensive learning rule for a synapse - the "first law" of synaptic plasticity. This interpretation is made explicit in theoretical models in which the total plasticity produced by complex spike patterns results from a superposition of the effects of all spike pairs. Although such models are appealing for their simplicity, they can fail dramatically. For example, the measured single-spike learning rule between hippocampal CA3 and CA1 pyramidal neurons does not predict the existence of long-term potentiation one of the best-known forms of synaptic plasticity. Layers of complexity have been added to the basic STDP model to repair predictive failures, but they have been outstripped by experimental data. We propose an alternate first law: neural activity triggers changes in key biochemical intermediates, which act as a more direct trigger of plasticity mechanisms. One particularly successful model uses intracellular calcium as the intermediate and can account for many observed properties of bidirectional plasticity. In this formulation, STDP is not itself the basis for explaining other forms of plasticity, but is instead a consequence of changes in the biochemical intermediate, calcium. Eventually a mechanism-based framework for learning rules should include other messengers, discrete change at individual synapses, spread of plasticity among neighboring synapses, and priming of hidden processes that change a synapse's susceptibility to future change. Mechanism-based models provide a rich framework for the computational representation of synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the central goals of neuroscience research is to determine how networks of neurons control and modify behavior. One of the most influential model systems for this kind of analysis is the siphon and gill withdrawal reflex of the marine mollusc A. californica. In response to tactile stimulation, the siphon displays 3 different responses: (1) a posterior pointing and leveling (flaring) of the siphon in response to tail stimulation (the siphon T response), (2) constriction and anterior pointing to head stimulation (the siphon H response) and (3) constriction and withdrawal between the animal's parapodia (the siphon S response). The siphon S response is pseudoconditioned by a noxious tail stimulus to resemble the siphon T response. Behavioral and combined behavioral/intracellular studies were conducted to determine the motor neuronal control of these behaviors and to search for mechanisms of siphon response transformation following pseudoconditioning. The present studies have found that the flaring component of pseudoconditioned siphon S responses occurs during mantle pumping (MP) triggered by noxious tail stimulation. Siphon stimulation also triggers MP, as recorded in neurons of the Interneuron II pattern generator which commands MP. The 4 LF$\rm\sb{SB}$ siphon motor neurons (SMNs) were found necessary and sufficient for the siphon T response, while SMNs RD$\rm\sb S$ and LD$\rm\sb{S1}$ were found necessary and sufficient for the siphon H response. Following pseudoconditioning, there is an increase in the number of evoked spikes to the test stimulus for the LF$\rm\sb{SB}$ cells and a decreased number for RD$\rm\sb S.$ Siphon flaring occurring during the pseudoconditioned response correlates with increased LF$\rm\sb{SB}$ activity during triggered MP cycles. This suggests that psuedoconditioning is in part due to reconfiguration of the motor outputs of the Interneuron II network. These results suggest that these defensive responses are controlled and patterned by a well-defined, finite set of motor neurons and interneurons (Interneuron II) that are dedicated to specific behavioral functions, but also have parallel distributed properties. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes an ascending serotonergic pain modulation system projecting from the dorsal raphe (DR) nucleus of the midbrain to the parafascicularis (PF) nucleus of the thalamus. Previous studies by other investigators have led to the hypothesis that the DR would modulate responses to noxious stimuli in the PF by using 5HT. These other studies have shown that the DR contains serotonergic (5HT) cell bodies which project to many areas of the forebrain including the PF, that the PF is involved in pain perception, that electrical stimulation of the DR causes analgesia, and 5HT is necessary for this type of analgesia. One theory of the mechanisms of an endogenous pain modulation system is that brainstem nuclei have a decsending projection to the spinal cord to inhibit responses to noxious input at this level. The present study tests the hypothesis that there is also an ascending pain modulation pathway from the brainstem to the thalamus.^ To test this hypothesis, several types of experiments were performed on anesthetised rats. The major results of the experiments are as follows: (1) Three types of spontaneously active PF neurons were found: slow units firing at 1-10 spikes/sec, bursting units firing 2-5 times in 10-20 msec, pattern repeating every 1-2 sec, and fast units firing at 15-40 spikes/sec. The first two groups showed similar results to the treatments and were analysed together. The fast firing units did not respond to any of the treatments. (2) Noxious stimuli primarily increased neuronal firing rates in the PF, where as DR stimulation primarily decreased neuronal activity. DR stimulation applied simultaneously with noxious stimuli decreased the responses to the noxious stimuli as recorded in the PF units. (3) Microiontophoretically applied 5HT in the PF decreased spontaneous activity in the PF in a dose dependent manner and decreases responses to noxious stimuli in the PF. (4) Reduction of brain 5HT by 5,7 dihydroxytryptamine, a potent 5HT neurotoxin, caused PF units to be hypersensitive to both noxious and non noxious stimuli, reversed the effects of DR stimulation so that DR stimulation increased single units activity in the PF, and prolonged and intensified the depressant action of microiontophoretically applied 5HT. The results of this study are consistent with the hypothesis that the DR uses 5HT in a direct ascending pathway to the PF to modulate pain in the thalamus. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Reoviridae virus family is a group of economically and pathologically important viruses that have either single-, double-, or triple-shelled protein layers enclosing a segmented double stranded RNA genome. Each virus particle in this family has its own viral RNA dependent RNA polymerase and the enzymatic activities necessary for the mature RNA synthesis. Based on the structure of the inner most cores of the viruses, the Reoviridae viruses can be divided into two major groups. One group of viruses has a smooth surfaced inner core, surrounded by complete outer shells of one or two protein layers. The other group has an inner core decorated with turrets on the five-fold vertices, and could either completely lack or have incomplete outer protein layers. The structural difference is one of the determinant factors for their biological differences during the infection. ^ Cytoplasmic polyhedrosis virus (CPV) is a single-shelled, turreted virus and the structurally simplest member in Reoviridae. It causes specific chronic infections in the insect gut epithelial cells. Due to its wide range of insect hosts, CPV has been engineered as a potential insecticide for use in fruit and vegetable farming. Its unique structural simplicity, unparalleled capsid stability and ease of purification make CPV an ideal model system for studying the structural basis of dsRNA virus assembly at the highest possible resolution by electron cryomicroscopy (cryoEM) and three-dimensional (3D) reconstruction. ^ In this thesis work, I determined the first 3D structure of CPV capsids using 100 kV cryoEM. At an effective resolution of 17 Å, the full capsid reveals a 600-Å diameter, T = 1 icosahedral shell decorated with A and B spikes at the 5-fold vertices. The internal space of the empty CPV is unoccupied except for 12 mushroom-shaped densities that are attributed to the transcriptional enzyme complexes. The inside of the full capsid is packed with icosahedrally-ordered viral genomic RNA. The interactions of viral RNA with the transcriptional enzyme complexes and other capsid proteins suggest a mechanism for RNA transcription and subsequent release. ^ Second, the interactions between the turret proteins (TPs) and the major capsid shell protein (CSPs) have been identified through 3D structural comparisons of the intact CPV capsids with the spikeless CPV capsids, which were generated by chemical treatments. The differential effects of these chemical treatment experiments also indicated that CPV has a significantly stronger structural integrity than other dsRNA viruses, such as the orthoreovirus subcores, which are normally enclosed within outer protein shells. ^ Finally, we have reconstructed the intact CPV to an unprecendented 8 Å resolution from several thousand of 400kV cryoEM images. The 8 Å structure reveals interactions among the 120 molecules of each of the capsid shell protein (CSP), the large protrusion protein (LPP), and 60 molecules of the turret protein (TP). A total of 1980 α-helices and 720 β-sheets have been identified in these capsid proteins. The CSP structure is largely conserved, with the majority of the secondary structures homologous to those observed in the x-ray structures of corresponding proteins of other reoviruses, such as orthoreovirus and bluetongue virus. The three domains of TP are well positioned to play multifunctional roles during viral transcription. The completely non-equivalent interactions between LPP and CSP and those between the anchoring domain of TP and CSP account for the unparalleled stability of this structurally simplest member of the Reoviridae. ^