3 resultados para SPHENOPALATINE ARTERY LIGATION

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a challenging case of carotid occlusion with slowly evolving stroke, we used brain imaging to facilitate endovascular revascularization resulting in the relief of the patient's symptoms. Patients with carotid occlusion and continued neurological worsening or fluctuations present enormous treatment challenges. These patients may present "slow" strokes with subacute infarcts that present significant challenges and risks during attempts at revascularization of the occluded artery. We present such a case in which we used multimodal imaging techniques, including MR-perfusion, to facilitate endovascular revascularization. Our approach of delayed but cautious intra-arterial thrombolytic therapy, guided by brain imaging, and followed by stent placement across the residual stenosis, enabled revascularization of the occluded artery without overt in-hospital complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^