15 resultados para SNPs

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clubfoot is a common birth defect that affects 135,000 newborns each year worldwide. It is characterized by equinus deformity of one or both feet and hypoplastic calf muscles. Despite numerous study approaches, the cause(s) remains poorly understood although a multifactorial etiology is generally accepted. We considered the HOXA and HOXD gene clusters and insulin-like growth factor binding protein 3 (IGFBP3) as candidate genes because of their important roles in limb and muscle morphogenesis. Twenty SNPs from the HOXA and HOXD gene clusters and 12 SNPs in IGFBP3 were genotyped in a sample composed of non-Hispanic white and Hispanic multiplex and simplex families (discovery samples) and a second sample of non-Hispanic white simplex trios (validation sample). Four SNPs (rs6668, rs2428431, rs3801776, and rs3779456) in the HOXA cluster demonstrated altered transmission in the discovery sample, but only rs3801776, located in the HOXA basal promoter region, showed altered transmission in both the discovery and validation samples (P = 0.004 and 0.028). Interestingly, HOXA9 is expressed in muscle during development. An SNP in IGFBP3, rs13223993, also showed altered transmission (P = 0.003) in the discovery sample. Gene-gene interactions were identified between variants in HOXA, HOXD, and IGFBP3 and with previously associated SNPs in mitochondrial-mediated apoptotic genes. The most significant interactions were found between CASP3 SNPS and variants in HOXA, HOXD, and IGFBP3. These results suggest a biologic model for clubfoot in which perturbation of HOX and apoptotic genes together affect muscle and limb development, which may cause the downstream failure of limb rotation into a plantar grade position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolated clubfoot, a common birth defect occurring in more than 135,000 livebirths worldwide each year, is associated with significant health care and financial burdens. Clubfoot is defined by forefoot adduction, hindfoot varus, midfoot cavus and hindfoot equinus. Isolated clubfoot, which is the focus of these studies, is distinct from syndromic clubfoot because there are no other associated malformations. Population, family, twin and segregation analysis studies provide evidence that genetic and environmental factors play an etiologic role in isolated clubfoot. The studies described in this thesis were performed to define the role of genetic variation in isolated clubfoot. Interrogation of a deletion region associated with syndromic clubfoot, suggested that CASP8 and CASP10, two apoptotic genes, play a role in isolated clubfoot. To explore the role of apoptotic genes in clubfoot, SNPs spanning genes involved in the apoptotic pathway in the six chromosomal deletion regions, and limb patterning genes, HOXD and HOXA, were interrogated. SNPs in mitochondrial mediated apoptotic genes and several SNPs in HOXA and HOXD genes were modestly associated with clubfoot with the most significant SNP, rs3801776, located in the basal promoter of HOXA9. Several significant associations were found with SNPs in NFAT2 and TNIP2. Significant gene interactions were detected between SNPs in HOX and apoptotic genes. These findings suggest a model for clubfoot in which variation in one gene is not sufficient to cause the malformation but requires variation several genes to perturb protein expression sufficiently to alter muscle and foot development. These results significantly impact our knowledge base by delineating underlying mechanisms causing clubfoot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idiopathic or isolated clubfoot is a common orthopedic birth defect that affects approximately 135,000 children worldwide. It is characterized by equinus, varus and adductus deformities of the ankle and foot. Correction of clubfoot involves months of serial manipulations, castings and bracing, with surgical correction needed in forty percent of cases. Multifactorial etiology has been suggested in numerous studies with both environmental and genetic factors playing an etiologic role. Maternal smoking during pregnancy is the only common environmental factor that has consistently been shown to increase the risk for clubfoot. Moreover, a positive family history of clubfoot and maternal smoking increases the risk of clubfoot twenty fold. These findings suggest that genetic variation in smoking metabolism genes may increase susceptibility to clubfoot. Based on this reasoning, we interrogated eight candidate genes, chosen based on their involvement in phase 1 and 2 cigarette smoke metabolism. Twenty-two SNPs and two null alleles in eight genes (CYP1A1, CYP1A2, CYP1B1, CYP2A6, EPHX1, NAT2, GSTM1 and GSTT1) were genotyped in a dataset composed of nonHispanic white and Hispanic multiplex and simplex families. Only one SNP in CYP1A1, rs1048943, had significantly altered transmission in the aggregate and multiplex NHW datasets (p=0.003 and p=0.009). Perturbation of CYP1A1 by rs1048943 polymorphism causes an increase in the amount of harmful, adduct forming metabolic intermediates. A significant gene interaction between EPHX1 and NAT2 was also found (p=0.007). This interaction may affect the metabolism of harmful metabolic intermediates. Additionally, marginal interactions were found for other xenobiotic genes and these interactions may play a contributory role in clubfoot. Importantly, for CYP1A2, significant maternal (p=0.03; RR=1.24; 95% CI: 1.04-1.44) and fetal (p=0.01; RR=1.33; 95% CI: 1.13-1.54) genotypic effects were identified suggesting that both maternal and fetal genotypes impact normal limb development. No association was found for maternal smoking status and tobacco metabolism genes. Together, these results suggest that xenobiotic metabolism genes may play a contributory role in the etiology of clubfoot regardless of maternal smoking status and may impact foot development through perturbation of tobacco metabolic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (NSCLP), a common, complex orofacial birth defect that affects approximately 4,000 newborns each year in the United States, is caused by both genetic and environmental factors. Orofacial clefts affect the mouth and nose, causing severe deformity of the face, which require medical, dental and speech therapies. Despite having substantial genetic liability, less than 25% of the genetic contribute to NSCLP has been identified. The studies described in this thesis were performed to identify genes that contribute to NSCLP and to demonstrate the role of these genes in normal craniofacial development. Using genome scan and candidate gene approaches, novel associations with NSCLP were identified. These include MYH9 (7 SNPs, 0.009≤p<0.05), Wnt3A (4 SNPs, 0.001≤p≤0.005), Wnt11 (2 SNPs, 0.001≤p≤0.01) and CRISPLD2 (4 SNPs, 0.001≤p<0.05). The most interesting findings were for CRISPLD2. This gene is expressed in the fused mouse palate at E17.5. In zebrafish, crispld2 localized to the craniofacial region by one day post fertilization. Morpholino knockdown of crispld2 resulted in a lower survival rates and altered neural crest cell (NCC) clustering. Because NCCs form the tissues that populate the craniofacies, this NCC abnormality resulted in cartilage abnormalities of the jaw including fewer ceratobranchial cartilages forming the lower jaw (three pairs compared to five) and broader craniofacies compared to wild-type zebrafish. These findings suggest that the CRISPLD2 gene plays an important role in normal craniofacial development and perturbation of this gene in humans contributes to orofacial clefting. Overall, these results are important because they contribute to our understanding of normal craniofacial development and orofacial clefting etiology, information that can be used to develop better methods to diagnose, counsel and potentially treat NSCLP patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Neural tube defects (NTDs) occur in as many as 0.5-2 per 1000 live births in the United States. One of the most common and severe neural tube defects is meningomyelocele (MM) resulting from failed closure of the caudal end of the neural tube. MM has been induced by retinoic acid teratogenicity in rodent models. We hypothesized that genetic variants influencing retinoic acid (RA) induction via retinoic acid receptors (RARs) may be associated with risk for MM. METHODS: We analyzed 47 single nucleotide polymorphisms (SNPs) that span across the three retinoic acid receptor genes using the SNPlex genotyping platform. Our cohort consisted of 610 MM families. RESULTS: One variant in the RARA gene (rs12051734), three variants in the RARB gene (rs6799734, rs12630816, rs17016462), and a single variant in the RARG gene (rs3741434) were found to be statistically significant at p < 0.05. CONCLUSION: RAR genes were associated with risk for MM. For all associated SNPs, the rare allele conferred a protective effect for MM susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To identify systemic sclerosis (SSc) susceptibility loci via a genome-wide association study. METHODS: A genome-wide association study was performed in 137 patients with SSc and 564 controls from Korea using the Affymetrix Human SNP Array 5.0. After fine-mapping studies, the results were replicated in 1,107 SSc patients and 2,747 controls from a US Caucasian population. RESULTS: The single-nucleotide polymorphisms (SNPs) (rs3128930, rs7763822, rs7764491, rs3117230, and rs3128965) of HLA-DPB1 and DPB2 on chromosome 6 formed a distinctive peak with log P values for association with SSc susceptibility (P=8.16x10(-13)). Subtyping analysis of HLA-DPB1 showed that DPB1*1301 (P=7.61x10(-8)) and DPB1*0901 (P=2.55x10(-5)) were the subtypes most susceptible to SSc in Korean subjects. In US Caucasians, 2 pairs of SNPs, rs7763822/rs7764491 and rs3117230/rs3128965, showed strong association with SSc patients who had either circulating anti-DNA topoisomerase I (P=7.58x10(-17)/4.84x10(-16)) or anticentromere autoantibodies (P=1.12x10(-3)/3.2x10(-5)), respectively. CONCLUSION: The results of our genome-wide association study in Korean subjects indicate that the region of HLA-DPB1 and DPB2 contains the loci most susceptible to SSc in a Korean population. The confirmatory studies in US Caucasians indicate that specific SNPs of HLA-DPB1 and/or DPB2 are strongly associated with US Caucasian patients with SSc who are positive for anti-DNA topoisomerase I or anticentromere autoantibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Familial aggregation of intracranial aneurysms (IA) strongly suggests a genetic contribution to pathogenesis. However, genetic risk factors have yet to be defined. For families affected by aortic aneurysms, specific gene variants have been identified, many affecting the receptors to transforming growth factor-beta (TGF-beta). In recent work, we found that aortic and intracranial aneurysms may share a common genetic basis in some families. We hypothesized, therefore, that mutations in TGF-beta receptors might also play a role in IA pathogenesis. METHODS: To identify genetic variants in TGF-beta and its receptors, TGFB1, TGFBR1, TGFBR2, ACVR1, TGFBR3, and ENG were directly sequenced in 44 unrelated patients with familial IA. Novel variants were confirmed by restriction digestion analyses, and allele frequencies were analyzed in cases versus individuals without known intracranial disease. Similarly, allele frequencies of a subset of known SNPs in each gene were also analyzed for association with IA. RESULTS: No mutations were found in TGFB1, TGFBR1, TGFBR2, or ACVR1. Novel variants identified in ENG (p.A60E) and TGFBR3 (p.W112R) were not detected in at least 892 reference chromosomes. ENG p.A60E showed significant association with familial IA in case-control studies (P=0.0080). No association with IA could be found for any of the known polymorphisms tested. CONCLUSIONS: Mutations in TGF-beta receptor genes are not a major cause of IA. However, we identified rare variants in ENG and TGFBR3 that may be important for IA pathogenesis in a subset of families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth anomaly that requires prolonged multidisciplinary rehabilitation. Although variation in several genes has been identified as contributing to NSCLP, most of the genetic susceptibility loci have yet to be defined. To identify additional contributory genes, a high-throughput genomic scan was performed using the Illumina Linkage IVb Panel platform. We genotyped 6008 SNPs in nine non-Hispanic white NSCLP multiplex families and a single large African-American NSCLP multiplex family. Fourteen chromosomal regions were identified with LOD>1.5, including six regions not previously reported. Analysis of the data from the African-American and non-Hispanic white families revealed two likely chromosomal regions: 8q21.3-24.12 and 22q12.2-12.3 with LOD scores of 2.98 and 2.66, respectively. On the basis of biological function, syndecan 2 (SDC2) and growth differentiation factor 6 (GDF6) in 8q21.3-24.12 and myosin heavy-chain 9, non-muscle (MYH9) in 22q12.2-12.3 were selected as candidate genes. Association analyses from these genes yielded marginally significant P-values for SNPs in SDC2 and GDF6 (0.01

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position -1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position -819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position -592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-Reactive Protein (CRP) is a biomarker indicating tissue damage, inflammation, and infection. High-sensitivity CRP (hsCRP) is an emerging biomarker often used to estimate an individual’s risk for future coronary heart disease (CHD). hsCRP levels falling below 1.00 mg/l indicate a low risk for developing CHD, levels ranging between 1.00 mg/l and 3.00 mg/l indicate an elevated risk, and levels exceeding 3.00 mg/l indicate high risk. Multiple Genome-Wide Association Studies (GWAS) have identified a number of genetic polymorphisms which influence CRP levels. SNPs implicated in such studies have been found in or near genes of interest including: CRP, APOE, APOC, IL-6, HNF1A, LEPR, and GCKR. A strong positive correlation has also been found to exist between CRP levels and BMI, a known risk factor for CHD and a state of chronic inflammation. We conducted a series of analyses designed to identify loci which interact with BMI to influence CRP levels in a subsample of European-Americans in the ARIC cohort. In a stratified GWA analysis, 15 genetic regions were identified as having significantly (p-value < 2.00*10-3) distinct effects on hsCRP levels between the two obesity strata: lean (18.50 kg/m2 < BMI < 24.99 kg/m2) and obese (BMI ≥ 30.00 kg/m2). A GWA analysis performed on all individuals combined (i.e. not a priori stratified for obesity status) with the inclusion of an additional parameter for BMI by gene interaction, identified 11 regions which interact with BMI to influence hsCRP levels. Two regions containing the genes GJA5 and GJA8 (on chromosome 1) and FBXO11 (on chromosome 2) were identified in both methods of analysis suggesting that these genes possibly interact with BMI to influence hsCRP levels. We speculate that atrial fibrillation (AF), age-related cataracts and the TGF-β pathway may be the biological processes influenced by the interaction of GJA5, GJA8 and FBXO11, respectively, with BMI to cause changes in hsCRP levels. Future studies should focus on the influence of gene x bmi interaction on AF, age-related cataracts and TGF-β.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2011, there will be an estimated 1,596,670 new cancer cases and 571,950 cancer-related deaths in the US. With the ever-increasing applications of cancer genetics in epidemiology, there is great potential to identify genetic risk factors that would help identify individuals with increased genetic susceptibility to cancer, which could be used to develop interventions or targeted therapies that could hopefully reduce cancer risk and mortality. In this dissertation, I propose to develop a new statistical method to evaluate the role of haplotypes in cancer susceptibility and development. This model will be flexible enough to handle not only haplotypes of any size, but also a variety of covariates. I will then apply this method to three cancer-related data sets (Hodgkin Disease, Glioma, and Lung Cancer). I hypothesize that there is substantial improvement in the estimation of association between haplotypes and disease, with the use of a Bayesian mathematical method to infer haplotypes that uses prior information from known genetics sources. Analysis based on haplotypes using information from publically available genetic sources generally show increased odds ratios and smaller p-values in both the Hodgkin, Glioma, and Lung data sets. For instance, the Bayesian Joint Logistic Model (BJLM) inferred haplotype TC had a substantially higher estimated effect size (OR=12.16, 95% CI = 2.47-90.1 vs. 9.24, 95% CI = 1.81-47.2) and more significant p-value (0.00044 vs. 0.008) for Hodgkin Disease compared to a traditional logistic regression approach. Also, the effect sizes of haplotypes modeled with recessive genetic effects were higher (and had more significant p-values) when analyzed with the BJLM. Full genetic models with haplotype information developed with the BJLM resulted in significantly higher discriminatory power and a significantly higher Net Reclassification Index compared to those developed with haplo.stats for lung cancer. Future analysis for this work could be to incorporate the 1000 Genomes project, which offers a larger selection of SNPs can be incorporated into the information from known genetic sources as well. Other future analysis include testing non-binary outcomes, like the levels of biomarkers that are present in lung cancer (NNK), and extending this analysis to full GWAS studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke is the third leading cause of death and a major debilitating disease in the United States. Multiple factors, including genetic factors, contribute to the development of the disease. Genome-wide association studies (GWAS) have contributed to the identification of genetic loci influencing risk for complex diseases, such as stroke. In 2010, a GWAS of incident stroke was performed in four large prospective cohorts from the USA and Europe and identified an association of two Single Nucleotide Polymorphisms (SNPs) on chromosome 12p13 with a greater risk of ischemic stroke in individuals of European and African-American ancestry. These SNPs are located 11 Kb upstream of the nerve injury-induced gene 2, Ninjurin2 (NINJ2), suggesting that this gene may be involved in stroke pathogenesis. NINJ2 is a cell adhesion molecule induced in the distal glial cells from a sciatic-nerve injury at 7-days after injury. In an effort to ascribe a possible role of NINJ2 in stroke, we have assessed changes in the level of gene and protein expression of NINJ2 following a time-course from a transiently induced middle cerebral artery ischemic stroke in mice brains. We report an increase in the gene expression of NINJ2 in the ischemic and peri-infarct (ipsilateral) cortical tissues at 7 and 14-days after stroke. We also report an increase in the protein expression of NINJ2 in the cortex of both the ipsilateral and contralateral cortical tissues at the same time-points. We conclude that the expression of NINJ2 is regulated by an ischemic stroke in the cortex and is consistent with NINJ2 being involved in the recovery time-points of stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.