2 resultados para SINUS ANATOMICAL VARIATIONS
em DigitalCommons@The Texas Medical Center
Resumo:
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^
Resumo:
Radiation therapy for patients with intact cervical cancer is frequently delivered using primary external beam radiation therapy (EBRT) followed by two fractions of intracavitary brachytherapy (ICBT). Although the tumor is the primary radiation target, controlling microscopic disease in the lymph nodes is just as critical to patient treatment outcome. In patients where gross lymphadenopathy is discovered, an extra EBRT boost course is delivered between the two ICBT fractions. Since the nodal boost is an addendum to primary EBRT and ICBT, the prescription and delivery must be performed considering previously delivered dose. This project aims to address the major issues of this complex process for the purpose of improving treatment accuracy while increasing dose sparing to the surrounding normal tissues. Because external beam boosts to involved lymph nodes are given prior to the completion of ICBT, assumptions must be made about dose to positive lymph nodes from future implants. The first aim of this project was to quantify differences in nodal dose contribution between independent ICBT fractions. We retrospectively evaluated differences in the ICBT dose contribution to positive pelvic nodes for ten patients who had previously received external beam nodal boost. Our results indicate that the mean dose to the pelvic nodes differed by up to 1.9 Gy between independent ICBT fractions. The second aim is to develop and validate a volumetric method for summing dose of the normal tissues during prescription of nodal boost. The traditional method of dose summation uses the maximum point dose from each modality, which often only represents the worst case scenario. However, the worst case is often an exaggeration when highly conformal therapy methods such as intensity modulated radiation therapy (IMRT) are used. We used deformable image registration algorithms to volumetrically sum dose for the bladder and rectum and created a voxel-by-voxel validation method. The mean error in deformable image registration results of all voxels within the bladder and rectum were 5 and 6 mm, respectively. Finally, the third aim explored the potential use of proton therapy to reduce normal tissue dose. A major physical advantage of protons over photons is that protons stop after delivering dose in the tumor. Although theoretically superior to photons, proton beams are more sensitive to uncertainties caused by interfractional anatomical variations, and must be accounted for during treatment planning to ensure complete target coverage. We have demonstrated a systematic approach to determine population-based anatomical margin requirements for proton therapy. The observed optimal treatment angles for common iliac nodes were 90° (left lateral) and 180° (posterior-anterior [PA]) with additional 0.8 cm and 0.9 cm margins, respectively. For external iliac nodes, lateral and PA beams required additional 0.4 cm and 0.9 cm margins, respectively. Through this project, we have provided radiation oncologists with additional information about potential differences in nodal dose between independent ICBT insertions and volumetric total dose distribution in the bladder and rectum. We have also determined the margins needed for safe delivery of proton therapy when delivering nodal boosts to patients with cervical cancer.