31 resultados para SINGLE-NUCLEOTIDE POLYMORPHISMS (SNP)
em DigitalCommons@The Texas Medical Center
Resumo:
With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^
Resumo:
Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^
Resumo:
The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.
Resumo:
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
Resumo:
OBJECTIVE: To identify systemic sclerosis (SSc) susceptibility loci via a genome-wide association study. METHODS: A genome-wide association study was performed in 137 patients with SSc and 564 controls from Korea using the Affymetrix Human SNP Array 5.0. After fine-mapping studies, the results were replicated in 1,107 SSc patients and 2,747 controls from a US Caucasian population. RESULTS: The single-nucleotide polymorphisms (SNPs) (rs3128930, rs7763822, rs7764491, rs3117230, and rs3128965) of HLA-DPB1 and DPB2 on chromosome 6 formed a distinctive peak with log P values for association with SSc susceptibility (P=8.16x10(-13)). Subtyping analysis of HLA-DPB1 showed that DPB1*1301 (P=7.61x10(-8)) and DPB1*0901 (P=2.55x10(-5)) were the subtypes most susceptible to SSc in Korean subjects. In US Caucasians, 2 pairs of SNPs, rs7763822/rs7764491 and rs3117230/rs3128965, showed strong association with SSc patients who had either circulating anti-DNA topoisomerase I (P=7.58x10(-17)/4.84x10(-16)) or anticentromere autoantibodies (P=1.12x10(-3)/3.2x10(-5)), respectively. CONCLUSION: The results of our genome-wide association study in Korean subjects indicate that the region of HLA-DPB1 and DPB2 contains the loci most susceptible to SSc in a Korean population. The confirmatory studies in US Caucasians indicate that specific SNPs of HLA-DPB1 and/or DPB2 are strongly associated with US Caucasian patients with SSc who are positive for anti-DNA topoisomerase I or anticentromere autoantibodies.
Resumo:
Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position -1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position -819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position -592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.
Resumo:
Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more loci in a population and may be a useful tool in a diverse array of applications including disease gene mapping, elucidating the demographic history of populations, and testing hypotheses of human evolution. However, the successful application of LD-based approaches to pertinent genetic questions is hampered by a lack of understanding about the forces that mediate the genome-wide distribution of LD within and between human populations. Delineating the genomic patterns of LD is a complex task that will require interdisciplinary research that transcends traditional scientific boundaries. The research presented in this dissertation is predicated upon the need for interdisciplinary studies and both theoretical and experimental projects were pursued. In the theoretical studies, I have investigated the effect of genotyping errors and SNP identification strategies on estimates of LD. The primary importance of these two chapters is that they provide important insights and guidance for the design of future empirical LD studies. Furthermore, I analyzed the allele frequency distribution of 26,530 single nucleotide polymorphisms (SNPs) in three populations and generated the first-generation natural selection map of the human genome, which will be an important resource for explaining and understanding genomic patterns of LD. Finally, in the experimental study, I describe a novel and simple, low-cost, and high-throughput SNP genotyping method. The theoretical analyses and experimental tools developed in this dissertation will facilitate a more complete understanding of patterns of LD in human populations. ^
Resumo:
To identify genetic susceptibility loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas completed detailed physical and ophthalmologic examinations including fundus photography for diabetic retinopathy grading. 103 individuals with moderate-to-severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy were defined as cases for this study. DNA samples extracted from study subjects were genotyped using the Affymetrix GeneChip® Human Mapping 100K Set, which includes 116,204 single nucleotide polymorphisms (SNPs) across the whole genome. Single-marker allelic tests and 2- to 8-SNP sliding-window Haplotype Trend Regression implemented in HelixTreeTM were first performed with these direct genotypes to identify genes/regions contributing to the risk of severe diabetic retinopathy. An additional 1,885,781 HapMap Phase II SNPs were imputed from the direct genotypes to expand the genomic coverage for a more detailed exploration of genetic susceptibility to diabetic retinopathy. The average estimated allelic dosage and imputed genotypes with the highest posterior probabilities were subsequently analyzed for associations using logistic regression and Fisher's Exact allelic tests, respectively. To move beyond these SNP-based approaches, 104,572 directly genotyped and 333,375 well-imputed SNPs were used to construct genetic distance matrices based on 262 retinopathy candidate genes and their 112 related biological pathways. Multivariate distance matrix regression was then used to test hypotheses with genes and pathways as the units of inference in the context of susceptibility to diabetic retinopathy. This study provides a framework for genome-wide association analyses, and implicated several genes involved in the regulation of oxidative stress, inflammatory processes, histidine metabolism, and pancreatic cancer pathways associated with severe diabetic retinopathy. Many of these loci have not previously been implicated in either diabetic retinopathy or diabetes. In summary, CDC73, IL12RB2, and SULF1 had the best evidence as candidates to influence diabetic retinopathy, possibly through novel biological mechanisms related to VEGF-mediated signaling pathway or inflammatory processes. While this study uncovered some genes for diabetic retinopathy, a comprehensive picture of the genetic architecture of diabetic retinopathy has not yet been achieved. Once fully understood, the genetics and biology of diabetic retinopathy will contribute to better strategies for diagnosis, treatment and prevention of this disease.^
Resumo:
Triglyceride levels are a component of plasma lipids that are thought to be an important risk factor for coronary heart disease and are influenced by genetic and environmental factors, such as single nucleotide polymorphisms (SNPs), alcohol intake, and smoking. This study used longitudinal data from the Bogalusa Heart Study, a biracial community-based survey of cardiovascular disease risk factors. A sample of 1191 individuals, 4 to 38 years of age, was measured multiple times from 1973 to 2000. The study sample consisted of 730 white and 461 African American participants. Individual growth models were developed in order to assess gene-environment interactions affecting plasma triglycerides over time. After testing for inclusion of significant covariates and interactions, final models, each accounting for the effects of a different SNP, were assessed for fit and normality. After adjustment for all other covariates and interactions, LIPC -514C/T was found to interact with age3, age2, and age and a non-significant interaction of CETP -971G/A genotype with smoking status was found (p = 0.0812). Ever-smokers had higher triglyceride levels than never smokers, but persons heterozygous at this locus, about half of both races, had higher triglyceride levels after smoking cessation compared to current smokers. Since tobacco products increase free fatty acids circulating in the bloodstream, smoking cessation programs have the potential to ultimately reduce triglyceride levels for many persons. However, due to the effect of smoking cessation on the triglyceride levels of CETP -971G/A heterozygotes, the need for smoking prevention programs is also demonstrated. Both smoking cessation and prevention programs would have a great public health impact on minimizing triglyceride levels and ultimately reducing heart disease. ^
Resumo:
Numerous studies have been carried out to try to better understand the genetic predisposition for cardiovascular disease. Although it is widely believed that multifactorial diseases such as cardiovascular disease is the result from effects of many genes which working alone or interact with other genes, most genetic studies have been focused on identifying of cardiovascular disease susceptibility genes and usually ignore the effects of gene-gene interactions in the analysis. The current study applies a novel linkage disequilibrium based statistic for testing interactions between two linked loci using data from a genome-wide study of cardiovascular disease. A total of 53,394 single nucleotide polymorphisms (SNPs) are tested for pair-wise interactions, and 8,644 interactions are found to be significant with p-values less than 3.5×10-11. Results indicate that known cardiovascular disease susceptibility genes tend not to have many significantly interactions. One SNP in the CACNG1 (calcium channel, voltage-dependent, gamma subunit 1) gene and one SNP in the IL3RA (interleukin 3 receptor, alpha) gene are found to have the most significant pair-wise interactions. Findings from the current study should be replicated in other independent cohort to eliminate potential false positive results.^
Resumo:
SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). The quality of the inferences about copy number can be affected by many factors including batch effects, DNA sample preparation, signal processing, and analytical approach. Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP genotyping data. However, these algorithms lack specificity to detect small CNVs due to the high false positive rate when calling CNVs based on the intensity values. Association tests based on detected CNVs therefore lack power even if the CNVs affecting disease risk are common. In this research, by combining an existing Hidden Markov Model (HMM) and the logistic regression model, a new genome-wide logistic regression algorithm was developed to detect CNV associations with diseases. We showed that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than an existing popular algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.^
Resumo:
Genome-Wide Association Study analytical (GWAS) methods were applied in a large biracial sample of individuals to investigate variation across the genome for its association with a surrogate low-density lipoprotein (LDL) particle size phenotype, the ratio of LDL-cholesterol level over ApoB level. Genotyping was performed on the Affymetrix 6.0 GeneChip with approximately one million single nucleotide polymorphisms (SNPs). The ratio of LDL cholesterol to ApoB was calculated, and association tests used multivariable linear regression analysis with an additive genetic model after adjustment for the covariates sex, age and BMI. Association tests were performed separately in African Americans and Caucasians. There were 9,562 qualified individuals in the Caucasian group and 3,015 qualified individuals in the African American group. Overall, in Caucasians two statistically significant loci were identified as being associated with the ratio of LDL-cholesterol over ApoB: rs10488699 (p<5 x10-8, 11q23.3 near BUD13) and the SNP rs964184 (p<5 x10-8 11q23.3 near ZNF259). We also found rs12286037 ((p<4x10-7) (11q23.3) near APOA5/A4/C3/A1 with suggestive associate in the Caucasian sample. In exploratory analyses, a difference in the pattern of association between individuals taking and not taking LDL-cholesterol lowering medications was observed. Individuals who were not taking medications had smaller p-value than those taking medication. In the African-American group, there were no significant (p<5x10-8) or suggestive associations (p<4x10-7) with the ratio of LDL-cholesterol over ApoB after adjusting for age, BMI, and sex and comparing individuals with and without LDL-cholesterol lowering medication. Conclusions: There were significant and suggestive associations between SNP genotype and the ratio of LDL-cholesterol to ApoB in Caucasians, but these associations may be modified by medication treatment.^
Resumo:
Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.