2 resultados para SERS-active substrates

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^