17 resultados para SENSORIMOTOR STRIATUM

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term sensitization in Aplysia is a well studied model for the examination of the cellular and molecules mechanisms of long-term memory. Several lines of evidence suggest long-term sensitization is mediated at least partially by long-term synaptic facilitation between the sensory and motor neurons. The sensitization training and one of its analogues, serotonin (5-HT), can induce long-term facilitation. In this study, another analogue to long-term sensitization training has been developed. Stimulation of peripheral nerves of pleural-pedal ganglia preparation induced long-term facilitation at both 24 hr and 48 hr. This is the first report that long-term facilitation in Aplysia persists for more than 24 hr, which is consistent with the observation that long-term sensitization lasts for more than one day. Thus, the data support the hypothesis that long-term facilitation is an important mechanism for long-term sensitization.^ One of the major differences between short-term and long-term facilitation is that long-term facilitation requires protein synthesis. Therefore, the effects of anisomycin, a protein synthesis inhibitor, on long-term facilitation was examined. Long-term facilitation induced by nerve stimulation was inhibited by 2 $\mu$M anisomycin, which inhibits $\sim$90% of protein synthesis. Nevertheless, at higher concentration (20 $\mu$M), anisomycin induced long-term facilitation by itself, which raises an interesting question about the function of anisomycin other than protein synthesis inhibition.^ Since protein synthesis is critical for long-term facilitation, a major goal is to identify and functionally characterize the molecules whose mRNA levels are altered during the formation of long-term facilitation. Behavioral training or its analogues (nerve stimulation and 5-HT) increases the level of mRNA of calmodulin (CaM). Thus, the role of Ca$\sp{2+}$-CaM-dependent protein kinase II (CaMKII), a major substrate of CaM, in long-term facilitation induced by nerve stimulation was examined. KN-62, a specific CaMKII inhibitor, did not block either the induction or the maintenance of long-term facilitation induced by nerve stimulation. These data indicate that CaMKII may not be involved in long-term facilitation. Another protein whose mRNA level of a molecule was increased by the behavioral training and the treatment of 5-HT is Aplysia tolloid/BMP-1-like protein 1 (apTBL-1). Tolloid in Drosophila and BMP-1 in human tissues are believed to be secreted as a metalloprotease to activate TGF-$\beta.$ Thus, the long-term effects of recombinant human TGF-$\beta1$ on synaptic strength were examined. Treatment of ganglia with TGF-$\beta1$ produced long-term facilitation, but not short-term or intermediate-term facilitation ($\le$4 hr). In addition, TGF-$\beta1$ and 5-HT were not additive in producing long-term facilitation, which indicates an interaction between two cascades. Moreover, 5-HT-induced facilitation (at both 24 hr and 48 hr) and nerve stimulation-induced facilitation (at 24 hr) were inhibited by TGF-$\beta$ sRII, a TGF-$\beta$ inhibitor. These results suggest that TGF-$\beta$ is part of the cascade of events underlying long-term sensitization, and also indicate that a signaling molecule used in development may also have functions in adult neuronal plasticity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively few contacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular form of the prion protein (PrP(c)) is necessary for the development of prion diseases and is a highly conserved protein that may play a role in neuroprotection. PrP(c) is found in both blood and cerebrospinal fluid and is likely produced by both peripheral tissues and the central nervous system (CNS). Exchange of PrP(c) between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications, but it is unknown whether PrP(c) can cross the blood-brain barrier (BBB). Here, we found that radioactively labeled PrP(c) crossed the BBB in both the brain-to-blood and blood-to-brain directions. PrP(c) was enzymatically stable in blood and in brain, was cleared by liver and kidney, and was sequestered by spleen and the cervical lymph nodes. Circulating PrP(c) entered all regions of the CNS, but uptake by the lumbar and cervical spinal cord, hypothalamus, thalamus, and striatum was particularly high. These results show that PrP(c) has bidirectional, saturable transport across the BBB and selectively targets some CNS regions. Such transport may play a role in PrP(c) function and prion replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early diagnosis of Parkinson's disease (PD) is required to improve therapeutic responses. Indeed, a clinical diagnosis of resting tremor, rigidity, movement and postural deficiencies usually reflect >50% loss of the nigrostriatal system in disease. In a step to address this, quantitative diffusion tensor magnetic resonance imaging (DTI) was used to assess nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication model of dopaminergic nigral degeneration. We now demonstrate increased average diffusion (p<0.005) and decreased fractional anisotropy (p<0.03) in the substantia nigra (SN) of 5- to 7-day MPTP-treated animals when compared to saline controls. Transverse diffusivity demonstrated the most significant differences (p < or = 0.002) and correlated with the numbers of SN dopaminergic neurons (r=-0.75, p=0.012). No differences were found in the striatum, corpus callosum, cerebral cortex, or ventricles. These results demonstrate that DTI may be used as a surrogate biomarker of nigral dopaminergic neuronal degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced expression of the presynaptic protein synapsin has been correlated with certain forms of long-term plasticity and learning and memory. However, the regulation and requirement for enhanced synapsin expression in long-term memory remains unknown. In the present study the technical advantages of the marine mollusc Aplysia were exploited in order to address this issue. In Aplysia, learning-induced enhancement in synaptic strength is modulated by serotonin (5-HT) and treatment with 5-HT in vitro of the sensorimotor synapse induces long-term facilitation (LTF) of synaptic transmission, which lasts for days, as well as the formation of new connections between the sensory and motor neuron. Results from immunofluorescence analysis indicated that 5-HT treatment upregulates synapsin protein levels within sensory neuron varicosities, the presumed site of neurotransmitter release. To investigate the mechanisms underlying increased synapsin expression, the promoter region of the Aplysia synapsin gene was cloned and a cAMP response element (CRE) was identified, raising the possibility that the transcriptional activator cAMP response element-binding protein-1 (CREB1) mediates the 5-HT-induced regulation of synapsin. Results from Chromatin Immunoprecipitation (ChIP) assays indicated that 5-HT treatment enhanced association of CREB1 surrounding the CRE site in the synapsin promoter and led to increased acetylation of histones H3 and H4 and decreased association of histone deacetylase 5 surrounding the CRE site in the synapsin promoter, a sign of transcriptional activation. In addition, sensory neurons injected with an enhanced green fluorescent protein (EGFP) reporter vector driven by the synapsin promoter exhibited a significant increase in EGFP expression following treatment with 5-HT. These results suggest that synapsin expression is regulated by 5-HT in part through transcriptional activation of the synapsin gene and through CREB1 association with the synapsin promoter. Furthermore, RNA interference that blocks 5-HT-induced elevation of synapsin expression also blocked long-term synaptic facilitation. These results indicate that 5-HT-induced regulation of synapsin is necessary for LTF and that synapsin is part of the cascade of synaptic events involved in the consolidation of memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasticity at the connections between sensory neurons and their follower cells in Aplysia has been used extensively as a model system to examine mechanisms of simple forms of learning, such as sensitization. Sensitization is induced, at least in part, by the transmitter serotonin (5-HT) and expressed in several forms, including facilitation of sensorimotor connections. Spike broadening has been believed to be a key mechanism underlying facilitation of nondepressed synapses. Previously, this broadening was believed to be dependent primarily on cAMP/protein kinase A (PKA)-mediated reduction of a noninactivating, relatively voltage-independent K$\sp{+}$ current termed the S-K$\sp+$ current (I$\sb{\rm K{,}S}$). Recent evidence, however, suggests that 5-HT-induced somatic spike broadening is composed of at least two components: a cAMP-dependent, rapidly developing component and a cAMP-independent, slowly developing component.^ Phorbol esters, activators of protein kinase C (PKC), mimicked the cAMP-independent component of 5-HT-induced broadening. Staurosporine, which inhibits PKC, had little effect on the rapidly developing component of 5-HT-induced broadening, but inhibited significantly the slowly developing component. These results suggest that PKC is involved in the cAMP-independent component of 5-HT-induced broadening. The membrane currents responsible for the slowly developing component of broadening were examined. Activation of PKC mimicked, and partially occluded, 5-HT-induced modulation of membrane currents above 0 mV, where a voltage-dependent K$\sp+$ current (I$\sb{\rm K{,}V}$) is significantly activated. This modulation was complex because it was associated with a reduction in the magnitude of I$\sb{\rm K{,}V}$, as well as a slowing of both activation and inactivation kinetics of I$\sb{\rm K{,}V}$. These results support the hypothesis that PKC modulates I$\sb{\rm K{,}V}$ and that this modulation contributes to the slowly developing component of 5-HT-induced broadening. Based on these results and others, a new scheme for 5-HT-induced spike broadening is proposed in which the modulatory effects are mediated via two second messenger/protein kinase systems converging and diverging on multiple ionic conductances.^ The relationship between spike broadening and synaptic facilitation was also examined. Pharmacological reduction of I$\sb{\rm K{,}V}$ by low concentrations of 4-aminopyridine (4-AP) led to spike broadening and facilitation of the nondepressed sensorimotor connections, indicating that spike broadening via the reduction of I$\sc{K,V}$ can facilitate the synaptic connection. Further analyses, however, revealed that 4-AP-induced facilitation has qualitative differences from 5-HT- and PKC-induced facilitation. These results suggest that 5-HT- and PKC-induced facilitation of nondepressed synapses is mediated, at least in part, by spike-duration independent (SDI) processes. Under certain conditions, the PKC inhibitor, staurosporine, significantly inhibited the 5-HT-induced facilitation of sensorimotor connections.^ Finally, it was found that activation of PKC increased a basal level of cAMP and that PKC caused desensitization of the 5-HT receptor, which may be a possible negative feedback mechanism through which an extracellular ligand, 5-HT, is regulated. These results suggest that these two second messenger/protein kinase pathways can interact in the sensory neuron. Thus, neuronal plasticity that may contribute to learning and memory appears to involve several complex and interactive processes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several interactive parameters of protein-calorie malnutrition imposed during postnatal ontogeny on the myelination of rat brain wre investigated. Postnatal starvation depresses the rate of myelin protein synthesis to approximately the same extent in all major brain regions examined (cerebral cortex, cerebellum, striatum, hippocampus, hypothalamus, midbrain and medulla), indicating a relatively uniform reduction in myelination throughout the brain. Early starvation from birth through 8 days, as well as starvation occurring late, from 14 to 30 days, produced no lasting deficit in myelin accumulation. Starvation from birth through 14 days or from birth through 20 days produces lasting, significant myelin deficits in all brain regions when examined following ad libitum feeding to 60 days of age. These data, in combination with the metabolic studies of myelin synthesis, show that severe starvation occurring during the 2nd and 3rd weeks of postnatal life produces an immediate reduction in myelin synthesis, and that the subsequent deficit in myelin accumulation is irreversible by nutritional rehabilitation. With respect to the relative severity of nutritional restriction occurring during this "critical" interval of brain ontogeny, additional studies showed that mild undernourishment (producing less than 20 percent growth lag) produces no myelin deficit. There appears to be a threshold effect such that undernutrition producing a growth lag of between 20 to 30 percent first produces a measurable deficit. Increasingly severe regimens of nutritional restriction which produce approximately 30, 40 and 50 percent body weight lags result in initial myelin deficits of 25, 55 and 60 percent, respectively. Initial myelin deficits do not recover following nutritional rehabilitation, although myelin continues to increase in both normal and all undernourished populations. At the cellular level, severe postnatal nutritional restriction appears to depress both the initial synthesis of myelin precursor proteins (as demonstrated for proteolipid protein) as well as their subsequent assembly into myelin membrane. All of the findings of the present studies are consistent with a hypothetical model of undernutrition-induced brain hypomyelination in which the primary defect consists of a failure of oligodendroglia to myelinate a substantial percentage of axons, resulting in a greatly decreased ratio of myelinated to unmyelinated axons. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transforming growth factor beta-1 (TGF-β1) is a cytokine and neurotrophic factor whose neuromodulatory effects in Aplysia californica were recently described. Previous results demonstrated that TGF-β1 induces long-term increases in the efficacy of sensorimotor synapses, a neural correlate of sensitization of the defensive tail withdrawal reflex. These results provided the first evidence that a neurotrophic factor regulates neuronal plasticity associated with a simple form of learning in Aplysia, and raised many questions regarding the nature of the modulation. No homologs of TGF-β had previously been identified in Aplysia, and thus, it was not known whether components of TGF-β1 signaling pathways were present in Aplysia. Furthermore, the signaling mechanisms engaged by TGF-β1 had not been identified, and it was not known whether TGF-β1 regulated other aspects of neuronal function.^ The present investigation into the actions of TGF-β1 was initiated by examining the distribution of the type II TGF-β1 receptor, the ligand binding receptor. The receptor was widely distributed in the CNS and most neurons exhibited somatic and neuritic immunoreactivity. In addition, the ability of TGF-β1 to activate the cAMP/PKA and MAPK pathways, known to regulate several important aspects of neuronal function, was examined. TGF-β1 acutely decreased cAMP levels in sensory neurons, activated MAPK and triggered translocation of MAPK to the nucleus. MAPK activation was critical for both short- and long-term regulation of neuronal function by TGF-β1. TGF-β1 acutely decreased synaptic depression induced by low frequency stimuli in a MAPK-dependent manner. This regulation may result, at least in part, from the modulation of synapsin, a major peripheral synaptic vesicle protein. TGF-β1 stimulated MAPK-dependent phosphorylation of synapsin, a process believed to regulate synaptic vesicle mobilization from reserve to readily-releasable pools of neurotransmitter. In addition to its acute effect on synaptic efficacy, TGF-β1 also induced long-term increases in sensory neuron excitability. Whereas transient exposure to TGF-β1 was not sufficient to drive short-or long-term changes in excitability, prolonged exposure to TGF-β1 induced long-term changes in excitability that depended on MAPK. The results of these studies represent significant progress toward an understanding of the role of TGF-β1 in neuronal plasticity. ^