3 resultados para SELF-INDUCED TRANSPARENCY

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presentation of MHC class I (MHC-I)/peptide complexes by dendritic cells (DCs) is critical for the maintenance of central tolerance to self and for the regulation of cytotoxic T lymphocytes (CTL)-mediated adaptive immune responses against pathogens and cancer cells. Interestingly, several findings have suggested that the cytoplasmic tail of MHC class I plays a functional role in the regulation of CTL immune responses. For example, our previous studies demonstrated that exon 7-deleted MHC-I molecules not only showed extended DC cell surface half-lives but also induced significantly increased CTL responses to viral challange invivo. Although exon 7-deleted variant of MHC-I does not occur naturally in humans, the animal studies prompted us to examine whether exon 7-deleted MHC-I molecules could generate augmented CTL responses in a therapeutic DC-based vaccine setting. To examine the stimulatory capacity of exon 7-deleted MHC-I molecules, we generated a lentivirus-mediated gene transfer system to induce the expression of different MHC-I cytoplasmic tail isoforms in both mouse and human DCs. These DCs were then used as vaccines in a melanoma mouse tumor model and in a human invitro co-culture system. In this thesis, we show that DCs expressing exon 7-deleted MHC-I molecules, stimulated remarkably higher levels of T-cell cytokine production and significantly increased the proliferation of meanoma-specific (Pmel-1) T cells compared with DCs expressing wild type MHC-I. We also demonstrate that, in combination with adoptive transfer of Pmel-1 T-cell, DCs expressing exon 7-deleted Db molecules induced greater anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival as compared to DCs expressing wild-type Db molecules. Moreover, we also observed that human DCs expressing exon 7-deleted HLA-A2 molecules showed similarly augmented CTL stimulatory ability. Mechanistic studies suggest that exon 7-deleted MHC-I molecules showed impaired lateral membrane movement and extended cell surface half-lives within the DC/T-cell interface, leading to increased spatial availability of MHC-I/peptide complexes for recognition by CD8+ T cells. Collectively, these results suggesr that targeting exon 7 within the cytoplasmic tail of MHC-I molecules in DC vaccines has the potential to enhance CD8+ T cell stimulatory capacity and improve clinical outcomes in patients with cancer or viral infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research suggests women respond to the aggression-inducing effects of alcohol in a manner similar to men. Highly aggressive men are more prone to alcohol-induced aggression, but this relationship is less clear for women. This study examined whether alcohol consumption would differentially affect laboratory-measured aggression in a sample of aggressive and non-aggressive women and how those differences might be related to components of impulsive behavior. In 39 women recruited from the community (two groups: with and without histories of physical fighting) ages 21–40, laboratory aggressive behavior was assessed following placebo and 0.80 g/kg alcohol consumption (all women experienced both conditions). Baseline laboratory impulsive behavior of three impulsivity models was later assessed in the same women. In the aggression model (PSAP), participants were provoked by periodic subtractions of money, which were blamed on a fictitious partner. Aggression was operationalized as the responses the participant made to subtract money from that partner. The three components of impulsivity that were tested included: (1) response initiation (IMT/DMT), premature responses made prior to the completion of stimulus processing, (2) response inhibition (GoStop), a failure to inhibit an already initiated response, and (3) consequence sensitivity (SKIP and TCIP), the choice for a smaller-sooner reward over a larger-later reward. I hypothesized that, compared to women with no history of physical fighting, women with a history of physical fighting would exhibit higher rates of alcohol-induced laboratory aggression and higher rates of baseline impulsive responding (particularly for the IMT/DMT), which would also be related to the alcohol-induced increases aggression. Consistent with studies in men, the aggressive women showed strong associations between laboratory aggression and self-report measures, while the non-aggressive women did not. However, unlike men, following alcohol consumption it was the non-aggressive women's laboratory aggression that was related to their self-reports of aggression and impulsivity. Additionally, response initiation measures of impulsivity distinguished the two groups, while response inhibition and consequence sensitivity measures did not; commission error rates on the IMT/DMT were higher in the aggressive women compared to the non-aggressive women. Regression analyses of the behavioral measures showed no relationship between the aggression and impulsivity performance of the two groups. These results suggest that the behavioral (and potentially biological) mechanism underlying aggressive behavior of women is different than that of men. ^