5 resultados para SAMPLERS
em DigitalCommons@The Texas Medical Center
Resumo:
The purpose of this study was to assess the accuracy and precision of airborne volatile organic compound (VOC) concentrations measured using passive air samplers (3M 3500 organic vapor monitors) over extended sampling durations (9 and 15 days). A total of forty-five organic vapor monitor samples were collected at a State of Texas air monitoring site during two different sampling periods (July/August and November 2008). The results of this study indicate that for most of the tested compounds, there was no significant difference between long-term (9 or 15 days) sample concentrations and the means of parallel consecutive short-term (3 days) sample concentrations. Biases of 9 or 15-day measurements vs. consecutive 3-day measurements showed considerable variability. Those compounds that had percent bias values of <10% are suggested as acceptable for long-term sampling (9 and 15 days). Of the twenty-one compounds examined, 10 compounds are classified as acceptable for long-term sampling; these include m,p-xylene, 1,2,4-trimethylbenzene, n-hexane, ethylbenzene, benzene, toluene, o-xylene, d-limonene, dimethylpentane and methyl tertbutyl ether. The ratio of sampling procedure variability relative to variability within days was approximately 1.89 for both sampling periods for the 3-day vs. 9-day comparisons and approximately 2.19 for both sampling periods for the 3-day vs. 15-day comparisons. Considerably higher concentrations of most VOCs were measured during the November sampling period compared to the July/August period. These differences may be a result of varying meteorological conditions during these two time periods, e.g., the differences in wind direction, and wind speed. Further studies are suggested to further evaluate the accuracy and precision of 3M 3500 organic vapor monitors over extended sampling durations. ^
Resumo:
Nitrogen dioxide (NO$\sb2)$ levels in sixteen substandard houses located in Houston, Texas were examined. The classification of the houses as substandard was based on an assessment of structural integrity which would affect air exchange rates. In these homes, unvented gas space heaters were operated as the primary source of heat.^ The Ogawa passive sampling device was used to measure NO$\sb2$ concentrations over 24 to 48-hour periods during generally cold weather. A sampler was placed in the kitchen and bedroom of each house. The female head of household was asked to wear a monitor during area monitoring to assess her personal exposure. Outdoor levels of NO$\sb2$ were also measured.^ Mean (standard deviation) levels of kitchen, bedroom and personal exposures were 280 (125) ppb, 256 (155) ppb and 164 (102) ppb, respectively. Additional short-term ($<$24 hours) samples were measured in three houses. The mean level of NO$\sb2$ measured outdoors was 51 ppb over the course of the study.^ The measurements obtained with the Ogawa sampler were compared to those levels obtained using a reference method (chemiluminescence). Outdoor levels measured with the diffusion samplers were 48% higher.^ These results suggest that wintertime NO$\sb2$ levels within substandard houses using gas appliances for heating and cooking are extremely elevated. Further work is needed to investigate the prevalence of possible health effects associated with these exposures. ^
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
A community bioassay of copper was performed using benthic macroinvertebrates colonized on multiplate substrate samplers. Five copper concentrations ranging from 0.080-2.20 mg/l total copper were administered to five artificial streams by a Mount and Brungs proportional dilutor. Free copper ion as Cu('++) ranged from .002-.053 mg/l. A sixth stream received no copper and served as a control. Substrates were sampled at days 0, 14, and 28, and the results were used to compare 13 indices used or proposed to assess aquatic environmental impact. Sensitivity of the indices to changes in communities with respect to concentration and time was the basis for the comparison.^ Results indicated that all of the 8 diversity or richness indices tested gave approximately the same result (with the exception of number of species); they increased over the first 2-3 concentrations, then declined. Included among these was the Shannon index which gave false positive results, i.e., it increased, indicating enrichment, when in fact perturbation had occurred. This result was due to the disproportionate effect on the most abundant taxa, which caused a more even distribution of individuals among species. Number of species and individuals declined with increased concentration and time, with only one exception in the case of species, indicating perturbation.^ Results of five community comparison indices were varied at day 14 but by day 28 the results indicated a clear, nearly monotonic, trend due to copper impact. It was assumed that day 28 observations, though probably still changing, were nearer stability than at day 14 and therefore more representative of natural conditions. The changes in community comparison indices showed good agreement at 28 days and reflected the general decline in species and individuals. No single community comparison index could be set apart as superior to the others. ^
Resumo:
An exposure system was constructed to evaluate the performance of a personal organic vapor dosimeter (3520 OVM) at ppb concentrations of nine selected target volatile organic compounds (VOCs). These concentration levels are generally encountered in community air environments, both indoor and outdoor. It was demonstrated that the chamber system could provide closely-controlled conditions of VOC concentrations, temperature and relative humidity (RH) required for the experiments. The target experimental conditions included combinations of three VOC concentrations (10, 20 and 200 $\rm\mu g/m\sp3),$ three temperatures (10, 25 and 40$\sp\circ$C) and three RHs (12, 50 and 90% RH), leading to a total of 27 exposure conditions. No backgrounds of target VOCs were found in the exposure chamber system. In the exposure chamber, the variation of the temperature was controlled within $\pm$1$\sp\circ$C, and the variation of RH was controlled within $\pm$1.5% at 12% RH, $\pm$2% at 50% RH and $\pm$3% at 90% RH. High-emission permeation tubes were utilized to generate the target VOCs. Various patterns of the permeation rates were observed over time. The lifetimes and permeation rates of the tubes differed by compound, length of the tube and manufacturer. By carefully selecting the source and length of the tubes, and closely monitoring tube weight loss over time, the permeation tubes can be used for delivering low and stable concentrations of VOCs during multiple days.^ The results of this study indicate that the performance of the 3520 OVM is compound-specific and depends on concentration, temperature and humidity. With the exception of 1,3-butadiene under most conditions, and styrene and methylene chloride at very high relative humidities, recoveries were generally within $\pm$25% of theory, indicating that the 3520 OVM can be effectively used over the range of concentrations and environmental conditions tested with a 24-hour sampling period. Increasing humidities resulted in increasing negative bias from full recovery. Reverse diffusion conducted at 200 $\rm\mu g/m\sp3$ and five temperature/humidity combinations indicated severe diffusion losses only for 1,3-butadiene, methylene chloride and styrene under increased humidity. Overall, the results of this study do not support the need to employ diffusion samplers with backup sections for the exposure conditions tested. ^