3 resultados para S100
em DigitalCommons@The Texas Medical Center
Resumo:
Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma.
Resumo:
The molecular mechanisms of endometrail cancer invasion are poorly understood. S100A4, a member of the S100 Ca2+-binding protein family, was identified by oligonucleotide microarray qRT-PCR, and IHC, to be highly overexpressed in invasive endometrial carcinomas compared to non-invasive tumors. HEC-1A endometrial cancer cells transfected with S100A4 siRNA had undetectable S100A4 protein, decreased migration and invasion. The mechanism of S100A4 upregulation in endometrial cancer remains unclear. Methylation of the S100A4 gene was detected in benign endometrial glands and grade 1 tumors with no S100A4 expression. In contrast, grade 3 endometrioid tumors with high S100A4 expression showed no methylation of the gene. 5-Aza-2'-deoxycytidine, an inhibitor of DNA methyltransferase, induced the expression of S100A4 in the less invasive EC cell line, KLE, in which the S100A4 gene is hypermethylated and minimally expressed. S100A4 was induced during TGF-β1-triggered cell scattering in HEC-1A cells, in which S100A4 was demethylated. Transfection of HEC-1A cells with S100A4 siRNA significantly reduced the effect of TGF-β1 on basal migration and invasion. Our preliminary data suggested that this upregulation was mediated by the transcription factor Snail. One Snail binding consensus site was found in the region where DNA methylation was closely correlated with S100A4 gene expression. Chromatin immunoprecipitation assay confirmed the binding of Snail to this consensus site in HEC-1A cells. In SPEC2 endometrial cancer cells, loss of Snail leads to repressed S100A4 gene expression. Similar to S100A4, Snail was overexpressed in aggressive endometrial tumors. Our study suggested that the S100A4 gene was demethylated and further upregulated by the TGF-β1 and Snail pathway in invasive endometrial cancer. S100A4 could potentially serve as a good molecular marker for invasiveness and a target for therapeutic intervention for advanced endometrial cancer. ^
Resumo:
A major portion of this thesis work was dedicated to study the nature and significance of spliced introns. The initial work was focused on studying the IVS1$\sb{\rm C\beta 1}$ intron from a T-cell receptor (TCR)-$\beta$ gene. Compared to an intron lariat control from adenovirus pre-mRNA that was spliced in vitro, IVS1$\sb{\rm C\beta 1}$ was debranched less efficiently by HeLa S100 extracts, although IVS1$\sb{\rm C\beta 1}$ also used the consensus branchpoint in vivo. Subcellular-fractionation analysis showed that most IVS1$\sb{\rm C\beta 1}$ lariats cofractionated with pre-mRNA in the nucleus, consistent with the possibility that intron degradation releases splicing factors which will be available for further rounds of splicing. The half-life of IVS1$\sb{\rm C\beta 1}$ from the endogenous TCR-$\beta$ gene was measured using the general transcription inhibitor actinomycin D to be about $\sim$15 min, which was similar to that of unstable mRNAs such as c-myc mRNA.^ The general transcription inhibitor DRB was also used for intron stability analysis. Unexpectedly, DRB decreased intron and pre-mRNA levels only initially, it later increased the levels of intron-containing RNAs. Inhibition of transcription initiation appeared to be the major early effect (the reduction phase); whereas enhanced premature transcription termination was dominant later (the induction phase).^ Having established the procedures for studying in vivo spliced introns, this approach was applied to study the mechanism of nonsense-mediated downregulation (NMD), a phenomena in which premature termination codons (PTCs) decrease the levels of mRNAs. In this study, the novel intron-oriented approach was applied to study the mechanism of NMD. The levels of spliced introns immediately upstream and downstream of a PTC-bearing exon in a TCR-$\beta$ gene were identified and analyzed along with their pre-mRNA. Although PTC reduced the mRNA levels by 4 to 9 fold, the steady-state levels of spliced introns and the pre-mRNA-to-intron ratios were not significantly altered, indicating that the PTC did not significantly inhibit TCR-$\beta$ RNA splicing. Consistent with this conclusion, the half-lives of the PTC$\sp+$ and PTC$\sp-$ pre-mRNA were similar. The protein synthesis inhibitor cyclohexmide (CHX) upregulated the levels of the PTC$\sp+$ mRNA over 10 fold without affecting the levels of the spliced introns, suggesting that the reversal effect of CHX was through stabilization, not production. These results indicated that inhibition of splicing could not be the major mechanism for the NMD pathway of the TCR-$\beta$ gene, instead, suggesting that mRNA destabilization may be more important. (Abstract shortened by UMI.) ^