3 resultados para Robotics design framework

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current toxic tort cases have increased national awareness of health concerns and present an important avenue in which public health scientists can perform a vital function: in litigation, and in public health initiatives and promotions which may result. This review presents a systematic approach, using the paradigm of interactive public health disciplines, for the design of a matrix framework for medical surveillance of workers exposed to toxic substances. The matrix framework design addresses the required scientific bases to support the legal remedy of medical monitoring for workers injured as a result of their exposure to toxic agents. A background of recent legal developments which have a direct impact on the use of scientific expertise in litigation is examined in the context of toxic exposure litigation and the attainment of public health goals. The matrix model is applied to five different workplace exposures: dental mercury, firefighting, vinyl chloride manufacture, radon in mining and silica. An exposure matrix designed by the Department of Energy for government nuclear workers is included as a reference comparison to the design matrix. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The failure rate of health information systems is high, partially due to fragmented, incomplete, or incorrect identification and description of specific and critical domain requirements. In order to systematically transform the requirements of work into real information system, an explicit conceptual framework is essential to summarize the work requirements and guide system design. Recently, Butler, Zhang, and colleagues proposed a conceptual framework called Work Domain Ontology (WDO) to formally represent users’ work. This WDO approach has been successfully demonstrated in a real world design project on aircraft scheduling. However, as a top level conceptual framework, this WDO has not defined an explicit and well specified schema (WDOS) , and it does not have a generalizable and operationalized procedure that can be easily applied to develop WDO. Moreover, WDO has not been developed for any concrete healthcare domain. These limitations hinder the utility of WDO in real world information system in general and in health information system in particular. Objective: The objective of this research is to formalize the WDOS, operationalize a procedure to develop WDO, and evaluate WDO approach using Self-Nutrition Management (SNM) work domain. Method: Concept analysis was implemented to formalize WDOS. Focus group interview was conducted to capture concepts in SNM work domain. Ontology engineering methods were adopted to model SNM WDO. Part of the concepts under the primary goal “staying healthy” for SNM were selected and transformed into a semi-structured survey to evaluate the acceptance, explicitness, completeness, consistency, experience dependency of SNM WDO. Result: Four concepts, “goal, operation, object and constraint”, were identified and formally modeled in WDOS with definitions and attributes. 72 SNM WDO concepts under primary goal were selected and transformed into semi-structured survey questions. The evaluation indicated that the major concepts of SNM WDO were accepted by 41 overweight subjects. SNM WDO is generally independent of user domain experience but partially dependent on SNM application experience. 23 of 41 paired concepts had significant correlations. Two concepts were identified as ambiguous concepts. 8 extra concepts were recommended towards the completeness of SNM WDO. Conclusion: The preliminary WDOS is ready with an operationalized procedure. SNM WDO has been developed to guide future SNM application design. This research is an essential step towards Work-Centered Design (WCD).