7 resultados para Right of Partial Withdrawal
em DigitalCommons@The Texas Medical Center
Resumo:
Neuronal outgrowth has been proposed in many systems as a mechanism underlying memory storage. For example, sensory neuron outgrowth is widely accepted as an underlying mechanism of long-term sensitization of defensive withdrawal reflexes in Aplysia. The hypothesis is that learning leads to outgrowth and consequently to the formation of new synapses, which in turn strengthen the neural circuit underlying the behavior. However, key experiments to test this hypothesis have never been performed. ^ Four days of sensitization training leads to outgrowth of siphon sensory neurons mediating the siphon-gill withdrawal response in Aplysia . We found that a similar training protocol produced robust outgrowth in tail sensory neurons mediating the tail siphon withdrawal reflex. In contrast, 1 day of training, which effectively induces long-term behavioral sensitization and synaptic facilitation, was not associated with neuronal outgrowth. Further examination of the effect of behavioral training protocols on sensory neuron outgrowth indicated that this structural modification is associated only with the most persistent forms of sensitization, and that the induction of these changes is dependent on the spacing of the training trials over multiple days. Therefore, we suggest that neuronal outgrowth is not a universal mechanism underlying long-term sensitization, but is involved only in the most persistent forms of the memory. ^ Sensory neuron outgrowth presumably contributes to long-term sensitization through formation of new synapses with follower motor neurons, but this hypothesis has never been directly tested. The contribution of outgrowth to long-term sensitization was assessed using confocal microscopy to examine sites of contact between physiologically connected pairs of sensory and motor neurons. Following 4 days of training, the strength of both the behavior and sensorimotor synapse and the number of appositions with follower neurons was enhanced only on the trained side of the animal. In contrast, outgrowth was induced on both sides of the animal, indicating that although sensory neuron outgrowth does appear to contribute to sensitization through the formation of new synapses, outgrowth alone is not sufficient to account for the effects of sensitization. This indicates that key regulatory steps are downstream from outgrowth, possibly in the targeting of new processes and activation of new synapses. ^
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Tumor-specific transplantation antigens (TSTA) are individually distinct neoantigens expressed on the cells of chemically-induced neoplasms. TSTA are operationally defined by immunization of syngeneic mice against challenge with viable tumor cells. Immunization with cell surface or extracted TSTA induces specific resistance to transplanted tumor cells. The biological and biochemical nature of TSTA was investigated in the 3-methylcholanthrene-induced fibrosarcomas of female C3H/HeJ mice, MCA-F and MCA-D. Tumor cell suspensions were extracted by treatment with 3M KCl or 2.5% butanol solutions and the TSTA was partially purified by preparative isoelectric focusing. The isoelectric pH of TSTA purified from 3M KCl extracts was 5.8-6.0, and from butanol extracts was 6.4-6.6. Whereas immunization with 10('5) and 10('6) irradiated tumor cells induces complete rejection of tumor cell challenge over a two-fold-log dose range, immunization with ug quantities within a one-fold-log dose range of extracted TSTA induces only partial resistance to tumor challenge. Reduced immunogenicity of extracted TSTA is hypothesized to result from immunization of mice with insufficiently purified TSTA preparations. The hypothesis predicts that immunization with highly purified TSTA, free from interfering substances, induces complete rejection of tumor challenge over a broad dose range. To test the hypothesis preparative isotachophoresis (pITP) was used to purify TSTA from electrofocused TSTA fractions. Significant purification was achieved, as immunization with 15 pg to 1.5 ug (5 logs) of pITP-purified TSTA extracted from the MCA-F, or with 1 pg to 10 ng (4 logs) of TSTA from the MCA-D tumor induced specific resistance to tumor challenge. Despite 50,000 fold purification of TSTA, immunization induced partial, not complete, rejection of transplanted tumor cells. This suggests a clear dissociation of the immunogenicity and purification of extracted TSTA, indicating that the induction of partial immunity to tumor challenge is an intrinsic property of extracted TSTA.^
Resumo:
Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^
Resumo:
A life table methodology was developed which estimates the expected remaining Army service time and the expected remaining Army sick time by years of service for the United States Army population. A measure of illness impact was defined as the ratio of expected remaining Army sick time to the expected remaining Army service time. The variances of the resulting estimators were developed on the basis of current data. The theory of partial and complete competing risks was considered for each type of decrement (death, administrative separation, and medical separation) and for the causes of sick time.^ The methodology was applied to world-wide U.S. Army data for calendar year 1978. A total of 669,493 enlisted personnel and 97,704 officers were reported on active duty as of 30 September 1978. During calendar year 1978, the Army Medical Department reported 114,647 inpatient discharges and 1,767,146 sick days. Although the methodology is completely general with respect to the definition of sick time, only sick time associated with an inpatient episode was considered in this study.^ Since the temporal measure was years of Army service, an age-adjusting process was applied to the life tables for comparative purposes. Analyses were conducted by rank (enlisted and officer), race and sex, and were based on the ratio of expected remaining Army sick time to expected remaining Army service time. Seventeen major diagnostic groups, classified by the Eighth Revision, International Classification of Diseases, Adapted for Use In The United States, were ranked according to their cumulative (across years of service) contribution to expected remaining sick time.^ The study results indicated that enlisted personnel tend to have more expected hospital-associated sick time relative to their expected Army service time than officers. Non-white officers generally have more expected sick time relative to their expected Army service time than white officers. This racial differential was not supported within the enlisted population. Females tend to have more expected sick time relative to their expected Army service time than males. This tendency remained after diagnostic groups 580-629 (Genitourinary System) and 630-678 (Pregnancy and Childbirth) were removed. Problems associated with the circulatory system, digestive system and musculoskeletal system were among the three leading causes of cumulative sick time across years of service. ^
Resumo:
The purpose of this study was to evaluate the effectiveness of an HIV-screening program at a private health-care institution where the providers were trained to counsel pregnant women about the HIV-antibody test according to the latest recommendations made by the U.S. Public Health Service (PHS) and the Texas legislature. A before-and-after study design was selected for the study. The participants were OB/GYN nurses who attended an educational program and the patients they counseled about the HIV test. Training improved the nurses' overall knowledge about the content of the program and nurses were more likely to offer the HIV test to all pregnant women regardless of their risk of infection. Still, contrary to what was predicted, the nurses did not give more information to increase the knowledge pregnant women had about HIV infection, transmission, and available treatments. Consequently, many women were not given the chance to correctly assess their risk during the counseling session and there was no evidence that knowledge would reduce the propensity of many women to deny being at risk for HIV. On the other hand, pregnant women who received prenatal care after the implementation of the HIV-screening program were more likely to be tested than women who received prenatal care before its implementation (96% vs. 48%); in turn, the likelihood that more high-risk women would be tested for HIV also increased (94% vs. 60%). There was no evidence that mandatory testing with right of refusal would deter women from being tested for HIV. When the moment comes for a woman to make her decision, other concerns are more important to her than whether the option to be tested is mandatory or not. The majority of pregnant women indicated that their main reasons for being tested were: (a) the recommendation of their health-care provider; and (b) concern about the risks to their babies. Recommending that all pregnant women be tested regardless of their risk of infection, together with making the HIV test readily available to all women, are probably the two best ways of increasing the patients' participation in an HIV-screening program for pregnant women. ^