3 resultados para Rif
em DigitalCommons@The Texas Medical Center
Resumo:
Particular interest has been directed towards the macrophage as a primary antineoplastic cell due to its tumoricidal properties in vitro and the observation that an inverse relationship exists between the number of macrophages infiltrating a tumor and metastatic potential. The mechanism of macrophage-mediated injury of tumor cells remains unknown. Recently, it has been shown that injured tumor cells have defective mitochondrial respiration. Our studies have shown that activated macrophages can release soluble factors which can alter tumor cell respiration.^ The effects of a conditioned supernatant (CS) from cultures of activated macrophages on tumor cell (TC) mitochondrial respiration was studied. CS was obtained by incubation of BCG-elicited, murine peritoneal macrophage with RPMI-1640 supplemented with 10% FCS and 50 ng/ml bacterial endotoxin. This CS was used to treat cultures of EMT-6 TC for 24 hours. Mitochondrial respiration was measured polarigraphically using a Clark-type oxygen electrode. Cell growth rate was assessed by ('3)H-Thymidine incorporation. Exposure of EMT-6 TC to CS resulted in the inhibition of malate and succinate oxidation 76.6% and 72.9%, respectively. While cytochrome oxidase activity was decreased 61.1%. This inhibition was accompanied by a 98.8% inhibition of DNA synthesis (('3)H-Thymidine incorporation). Inhibition was dose-related with a 21.3% inhibition of succinate oxidase from a 0.3 ml dose of CS and a 50% inhibition with 1.0 mls. Chromatography of CS on Sephacryl S-200 resulted in isolation of an 80,000 and a 55,000 dalton component which contained the respiration inhibiting activity (RIF). These factors were distinct from a 120,000 dalton cytolytic factor determined by bioassay on Actinomycin-D treated L929 cells. RIF activity was also distinct from several other cytostatic factors but was itself associated with 2 peaks of cytostatic activity. Characterization of the RIF activity showed that it was destroyed by trypsin and heat (100(DEGREES)C, 5 min). It was stable over a broad range of pH (4-9) and its production was inhibited by cycloheximide. The RIF did not have a direct effect on isolated mitochondria of TC nor did it induce the formation of a stable intracellular toxin for mitochondria.^ In conclusion, activated macrophages synthesize and secrete an 80,000 and a 55,000 dalton protein which inhibits the mitochondrial metabolism of TC. These factors induce a cytostatic but not a cytolytic effect on TC.^ The macrophage plays a role in the control of normal and tumor cell growth and in tissue involution. Inhibition of respiration may be one mechanism used by macrophages to control cell growth.^
Resumo:
Mycobacterium tuberculosis, a bacillus known to cause disease in humans since ancient times, is the etiological agent of tuberculosis (TB). The infection is primarily pulmonary, although other organs may also be affected. The prevalence of pulmonary TB disease in the US is highest along the US-Mexico border, and of the four US states bordering Mexico, Texas had the second highest percentage of cases of TB disease among Mexico-born individuals in 1999 (CDC, 2001). Between the years of 1993 and 1998, the prevalence of drug-resistant (DR) TB was 9.1% among Mexican-born individuals and 4.4% among US-born individuals (CDC, 2001). In the same time period, the prevalence of multi-drug resistant (MDR) TB was 1.4% among Mexican-born individuals and 0.6% among US-born individuals (CDC, 2001). There is a renewed urgency in the quest for faster and more effective screening, diagnosis, and treatment methods for TB due to the resurgence of tuberculosis in the US during the mid-1980s and early 1990s (CDC, 2007a), and the emergence of drug-resistant, multidrug-resistant, and extremely drug-resistant tuberculosis worldwide. Failure to identify DR and MDR-TB quickly leads to poorer treatment outcomes (CDC, 2007b). The recent rise in TB/HIV comorbidity further complicates TB control efforts. The gold standard for identification of DR-TB requires mycobacterial growth in culture, a technique taking up to three weeks, during which time DR/MDR-TB individuals harboring resistant organisms may be receiving inappropriate treatment. The goal of this study was to determine the sensitivity and specificity of real-time quantitative polymerase chain reaction (qPCR) using molecular beacons in the Texas population. qPCR using molecular beacons is a novel approach to detect mycobacterial mutations conferring drug resistance. This technique is time-efficient and has been shown to have high sensitivity and specificity in several populations worldwide. Rifampin (RIF) susceptibility was chosen as the test parameter because strains of M. tuberculosis which are resistant to RIF are likely to also be MDR. Due to its status as a point of entry for many immigrants into the US, control efforts against TB and drug-resistant TB in Texas is a vital component of prevention efforts in the US as a whole. We show that qPCR using molecular beacons has high sensitivity and specificity when compared with culture (94% and 87%, respectively) and DNA sequencing (90% and 96%, respectively). We also used receiver operator curve analysis to calculate cutoff values for the objective determination of results obtained by qPCR using molecular beacons. ^
Resumo:
Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. RIF-resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes ≤2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader dependent and limits its clinical use. The aim of this study was to develop an objective, reader-independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from 2 regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: the Texas–Mexico border and Colombia. Using coded DNA specimens, mutations within an 81-bp hot spot region of rpoB were established by qPCR with 5 beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training.^