2 resultados para Reversible traffic lanes.

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotherapy is a common and effective method to treat many forms of cancer. However, treatment of cancer with chemotherapy has severe side effects which often limit the doses of therapy administered. Because some cancer chemotherapeutics target proliferating cells and tissues, all dividing cells, whether normal or tumor, are affected. Cell culture studies have demonstrated that UCN-01 is able to reversibly and selectively arrest normal dividing cells; tumor cells lines do not undergo this temporary arrest. Following UCN-01 treatment, normal cells displayed a 50-fold increase in IC50 for camptothecin; tumor cells showed no such increased tolerance. We have examined the response of the proliferating tissues of the mouse to UCN- 01 treatment, using the small bowel epithelium as a model system. Our results indicate that UCN-01 treatment can cause a cell cycle arrest in the gut epithelium, beginning 24 hours following UCN-01 administration, with cell proliferation remaining suppressed for one week. Two weeks post-UCN-01 treatment the rate of proliferation returns to normal levels. 5-FU administered during this period demonstrates that UCN-01 is able to provide protection to normal cells of the mouse within a narrow window of efficacy, from three to five days post-UCN-01. UCN-01 pretreated mice displayed improved survival, weight status and blood markers following 5-FU compared to control mice, indicating that UCN-01 can protect normal dividing tissues. The mechanism by which UCN-01 arrests normal cells in vivo was also examined. We have demonstrated that UCN-01 treatment in mice causes an increase in the G1 phase cell cycle proteins cdk4 and cyclin D, as well as the inhibitor p27. Phosphorylated Rb was also elevated in the arrested cells. These results are a departure from cell culture studies, in which inhibition of G1 phase cyclin dependent kinases led to hyposphosphorylation of Rb. Future investigation will be required to understand the mechanism of UCN-01 action. This is important information, especially for identification of alternate compounds which could provide the protection afforded by UCN-01.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^