2 resultados para Restraint System Tests.

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation describes an ascending serotonergic pain modulation system projecting from the dorsal raphe (DR) nucleus of the midbrain to the parafascicularis (PF) nucleus of the thalamus. Previous studies by other investigators have led to the hypothesis that the DR would modulate responses to noxious stimuli in the PF by using 5HT. These other studies have shown that the DR contains serotonergic (5HT) cell bodies which project to many areas of the forebrain including the PF, that the PF is involved in pain perception, that electrical stimulation of the DR causes analgesia, and 5HT is necessary for this type of analgesia. One theory of the mechanisms of an endogenous pain modulation system is that brainstem nuclei have a decsending projection to the spinal cord to inhibit responses to noxious input at this level. The present study tests the hypothesis that there is also an ascending pain modulation pathway from the brainstem to the thalamus.^ To test this hypothesis, several types of experiments were performed on anesthetised rats. The major results of the experiments are as follows: (1) Three types of spontaneously active PF neurons were found: slow units firing at 1-10 spikes/sec, bursting units firing 2-5 times in 10-20 msec, pattern repeating every 1-2 sec, and fast units firing at 15-40 spikes/sec. The first two groups showed similar results to the treatments and were analysed together. The fast firing units did not respond to any of the treatments. (2) Noxious stimuli primarily increased neuronal firing rates in the PF, where as DR stimulation primarily decreased neuronal activity. DR stimulation applied simultaneously with noxious stimuli decreased the responses to the noxious stimuli as recorded in the PF units. (3) Microiontophoretically applied 5HT in the PF decreased spontaneous activity in the PF in a dose dependent manner and decreases responses to noxious stimuli in the PF. (4) Reduction of brain 5HT by 5,7 dihydroxytryptamine, a potent 5HT neurotoxin, caused PF units to be hypersensitive to both noxious and non noxious stimuli, reversed the effects of DR stimulation so that DR stimulation increased single units activity in the PF, and prolonged and intensified the depressant action of microiontophoretically applied 5HT. The results of this study are consistent with the hypothesis that the DR uses 5HT in a direct ascending pathway to the PF to modulate pain in the thalamus. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental procedure was developed using the Brainstem Evoked Response (BER) electrophysiological technique to assess the effect of neurotoxic substances on the auditory system. The procedure utilizes Sprague-Dawley albino rats who have had dural electrodes implanted in their skulls, allowing neuroelectric evoked potentials to be recorded from their brainstems. Latency and amplitude parameters derived from the evoked potentials help assess the neuroanatomical integrity of the auditory pathway in the brainstem. Moreover, since frequency-specific auditory stimuli are used to evoke the neural responses, additional audiometric information is obtainable. An investigation on non-exposed control animals shows the BER threshold curve obtained by tests at various frequencies very closely approximates that obtained by behavioral audibility tests. Thus, the BER appears to be a valid measure of both functional and neuroanatomical integrity of the afferent auditory neural pathway.^ To determine the usefulness of the BER technique in neurobehavioral toxicology research, a known neurotoxic agent, Pb, was studied. Female Sprague-Dawley rats were dosed for 45 days with low levels of Pb acetate in their drinking water, after which BER recordings were obtained. The Pb dosages were determined from the findings of an earlier pilot study. One group of 6 rats received normal tap water, one group of 7 rats received a solution of 0.1% Pb, and another group of 7 rats received a solution of 0.2% Pb. After 45 days, the three groups exhibited blood Pb levels of 4.5 (+OR-) 0.43 (mu)g/100 ml, 37.8 (+OR-) 4.8 (mu)g/100 ml and 47.3 (+OR-) 2.7 (mu)g/100 ml, respectively.^ The results of the BER recording indicated evoked response waveform latency abnormalities in both the Pb-treated groups when midrange frequency (8 kHz to 32 kHz) stimuli were used. For the most part, waveform amplitudes did not vary significantly from control values. BER recordings obtained after a 30-day recovery period indicated the effects seen in the 0.1% Pb group had disappeared. However, those anomalies exhibited by the 0.2% Pb group either remained or increased in number. This outcome indicates a longer lasting or possibly irreversible effect on the auditory system from the higher dose of Pb. The auditory pathway effect appears to be in the periphery, at the level of the cochlea or the auditory (VIII) nerve. The results of this research indicate the BER technique is a valuable and sensitive indicator of low-level toxic effects on the auditory system.^