4 resultados para Restraint System Injuries.
em DigitalCommons@The Texas Medical Center
Resumo:
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.
Resumo:
This study assessed if hospital-wide implementation of a needleless intravenous connection system reduces the number of reported percutaneous injuries, overall and those specifically due to intravenous connection activities.^ Incidence rates were compared before and after hospital-wide implementation of a needleless intravenous system at two hospitals, a full service general hospital and a pediatric hospital. The years 1989-1991 were designated as pre-implementation and 1993 was designated as post-implementation. Data from 1992 were not included in the effectiveness evaluation to allow employees to become familiar with use of the new device. The two hospitals showed rate ratios of 1.37 (95% CI = 1.22-1.54, p $\le$.0001) and 1.63 (95% CI = 1.34-1.97, p $\le$.0001), or a 27.1% and a 38.6% reduction in overall injury rate, respectively. Rate ratios for intravenous connection injuries were 2.67 (95% CI = 1.89-3.78, p $\le$.0001) and 3.35 (95% CI = 1.87-6.02, p $\le$.0001), or a 62.5% and a 69.9% reduction in injury rate, respectively. Rate ratios for all non-intravenous connection injuries were calculated to control for factors other than device implementation that may have been operating to reduce the injury rate. These rate ratios were lower, 1.21 and 1.44, demonstrating the magnitude of injury reduction due to factors other than device implementation. It was concluded that the device was effective in reduction of numbers of reported percutaneous injuries.^ Use-effectiveness of the system was also assessed by a survey of randomly selected device users to determine satisfaction with the device, frequency of use and barriers to use. Four hundred seventy-eight surveys were returned for a response rate of 50.9%. Approximately 94% of respondents at both hospitals expressed satisfaction with the needleless system and recommended continued use. The survey also revealed that even though over 50% of respondents report using the device "always" or "most of the time" for intravenous medication administration, flushing lines, and connecting secondary intravenous lines, needles were still being used for these same activities. Compatibility, accessibility and other technical problems were reported as reasons for using needles for these activities. These problems must be addressed, by both manufacturers and users, before the needleless system will be effective in prevention of all intravenous connection injuries. ^
Resumo:
The purpose of this research and development project was to develop a method, a design, and a prototype for gathering, managing, and presenting data about occupational injuries.^ State-of-the-art systems analysis and design methodologies were applied to the long standing problem in the field of occupational safety and health of processing workplace injuries data into information for safety and health program management as well as preliminary research about accident etiologies. The top-down planning and bottom-up implementation approach was utilized to design an occupational injury management information system. A description of a managerial control system and a comprehensive system to integrate safety and health program management was provided.^ The project showed that current management information systems (MIS) theory and methods could be applied successfully to the problems of employee injury surveillance and control program performance evaluation. The model developed in the first section was applied at The University of Texas Health Science Center at Houston (UTHSCH).^ The system in current use at the UTHSCH was described and evaluated, and a prototype was developed for the UTHSCH. The prototype incorporated procedures for collecting, storing, and retrieving records of injuries and the procedures necessary to prepare reports, analyses, and graphics for management in the Health Science Center. Examples of reports, analyses, and graphics presenting UTHSCH and computer generated data were included.^ It was concluded that a pilot test of this MIS should be implemented and evaluated at the UTHSCH and other settings. Further research and development efforts for the total safety and health management information systems, control systems, component systems, and variable selection should be pursued. Finally, integration of the safety and health program MIS into the comprehensive or executive MIS was recommended. ^
Resumo:
Introduction: The Texas Occupational Safety & Health Surveillance System (TOSHSS) was created to collect, analyze and interpret occupational injury and illness data in order to decrease the impact of occupational injuries within the state of Texas. This process evaluation was performed midway through the 4-year grant to assess the efficiency and effectiveness of the surveillance system’s planning and implementation activities1. ^ Methods: Two evaluation guidelines published by the Centers for Disease Control and Prevention (CDC) were used as the theoretical models for this process evaluation. The Framework for Program Evaluation in Public Health was used to examine the planning and design of TOSHSS using logic models. The Framework for Evaluating Public Health Surveillance Systems was used to examine the implementation of approximately 60 surveillance activities, including uses of the data obtained from the surveillance system. ^ Results/Discussion: TOSHSS planning activities omitted the creation of a scientific advisory committee and specific activities designed to maintain contacts with stakeholders; and proposed activities should be reassessed and aligned with ongoing performance measurement criteria, including the role of collaborators in helping the surveillance system achieve each proposed activity. TOSHSS implementation activities are substantially meeting expectations and received an overall score of 61% for all activities being performed. TOSHSS is considered a surveillance system that is simple, flexible, acceptable, fairly stable, timely, moderately useful, with good data quality and a PVP of 86%. ^ Conclusions: Through the third year of TOSHSS implementation, the surveillance system is has made a considerable contribution to the collection of occupational injury and illness information within the state of Texas. Implementation of the nine recommendations provided under this process evaluation is expected to increase the overall usefulness of the surveillance system and assist TDSHS in reducing occupational fatalities, injuries, and diseases within the state of Texas. ^ 1 Disclaimer: The Texas Occupational Safety and Health Surveillance System is supported by Grant/Cooperative Agreement Number (U60 OH008473-01A1). The content of the current evaluation are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.^