5 resultados para Response Bias

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: (1) To compare maternal characteristics and psychological stress profile among African-American, Caucasian and Hispanic mothers who delivered very low birthweight infants. (2) To investigate associations between psychosocial factors, frequency of milk expression, skin-to-skin holding (STS), and lactation performance, defined as maternal drive to express milk and milk volume. STUDY DESIGN: Self-reported psychological questionnaires were given every 2 weeks after delivery over 10 weeks. Milk expression frequency, STS, and socioeconomic variables were collected. RESULT: Infant birthweight, education, and milk expression frequency differed between groups. Trait anxiety, depression and parental stress in a neonatal intensive care unit (PSS:NICU) were similar. African-American and Caucasian mothers reported the lowest scores in state anxiety and social desirability, respectively. Maternal drive to express milk, measured by maintenance of milk expression, correlated negatively with parental role alteration (subset of PSS:NICU) and positively with infant birthweight and STS. Milk volume correlated negatively with depression and positively with milk expression frequency and STS. CONCLUSION: Differences between groups were observed for certain psychosocial factors. The response bias to self-reported questionnaires between groups may not provide an accurate profile of maternal psychosocial profile. With different factors correlating with maintenance of milk expression and milk volume, lactation performance can be best enhanced with a multi-faceted intervention program, incorporating parental involvement in infant care, close awareness and management of maternal mental health, and encouragement for frequent milk expression and STS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. To identify how an individual's finances and health insurance coverage affects their decision whether to avoid or delay medical care. Methods. Secondary data analysis of The Effects of Financial and Insurance Considerations on Health Care Utilization 2007 telephone survey data. Study inclusion criteria. 18 years old, Harris County resident, and had a need for medical care within the past year. Post weighing was done to correct for non-response bias. Results. Survey decision makers were predominately minorities (60%), Female (70%), and insured (71%). Ninety-two percent of participants sought care when needed, however, of this population 39% delayed medical care. Fifty-six percent of participants who delayed medical care sought care in the Doctor's office. For those who replied "Yes" to considering health insurance and finances in deciding to avoid medical care, 61% stated that they were confused about their insurance coverage as the explanation why. Fifty-five percent of Respondents indicated that delaying medical care was due to not knowing whether medical care was necessary. Conclusion. Additional research needs to be conducted to examine the relationship between onset of medical symptoms and final medical diagnosis to identify whether survey participants who delayed or avoided medical care actions were appropriate responses to their initial medical symptoms and final diagnosis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. Previous studies have shown a survival advantage in ovarian cancer patients with Ashkenazi-Jewish (AJ) BRCA founder mutations, compared to sporadic ovarian cancer patients. The purpose of this study was to determine if this association exists in ovarian cancer patients with non-Ashkenazi Jewish BRCA mutations. In addition, we sought to account for possible "survival bias" by minimizing any lead time that may exist between diagnosis and genetic testing. ^ Methods. Patients with stage III/IV ovarian, fallopian tube, or primary peritoneal cancer and a non-Ashkenazi Jewish BRCA1 or 2 mutation, seen for genetic testing January 1996-July 2007, were identified from genetics and institutional databases. Medical records were reviewed for clinical factors, including response to initial chemotherapy. Patients with sporadic (non-hereditary) ovarian, fallopian tube, or primary peritoneal cancer, without family history of breast or ovarian cancer, were compared to similar cases, matched by age, stage, year of diagnosis, and vital status at time interval to BRCA testing. When possible, 2 sporadic patients were matched to each BRCA patient. An additional group of unmatched, sporadic ovarian, fallopian tube and primary peritoneal cancer patients was included for a separate analysis. Progression-free (PFS) & overall survival (OS) were calculated by the Kaplan-Meier method. Multivariate Cox proportional hazards models were calculated for variables of interest. Matched pairs were treated as clusters. Stratified log rank test was used to calculate survival data for matched pairs using paired event times. Fisher's exact test, chi-square, and univariate logistic regression were also used for analysis. ^ Results. Forty five advanced-stage ovarian, fallopian tube and primary peritoneal cancer patients with non-Ashkenazi Jewish (non-AJ) BRCA mutations, 86 sporadic-matched and 414 sporadic-unmatched patients were analyzed. Compared to the sporadic-matched and sporadic-unmatched ovarian cancer patients, non-AJ BRCA mutation carriers had longer PFS (17.9 & 13.8 mos. vs. 32.0 mos., HR 1.76 [95% CI 1.13–2.75] & 2.61 [95% CI 1.70–4.00]). In relation to the sporadic- unmatched patients, non-AJ BRCA patients had greater odds of complete response to initial chemotherapy (OR 2.25 [95% CI 1.17–5.41]) and improved OS (37.6 mos. vs. 101.4 mos., HR 2.64 [95% CI 1.49–4.67]). ^ Conclusions. This study demonstrates a significant survival advantage in advanced-stage ovarian cancer patients with non-AJ BRCA mutations, confirming the previous studies in the Jewish population. Our efforts to account for "survival bias," by matching, will continue with collaborative studies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Work Limitations Questionnaire (WLQ) is used to determine the amount of work loss and productivity which stem from certain health conditions, including rheumatoid arthritis and cancer. The questionnaire is currently scored using methodology from Classical Test Theory. Item Response Theory, on the other hand, is a theory based on analyzing item responses. This study wanted to determine the validity of using Item Response Theory (IRT), to analyze data from the WLQ. Item responses from 572 employed adults with dysthymia, major depressive disorder (MDD), double depressive disorder (both dysthymia and MDD), rheumatoid arthritis and healthy individuals were used to determine the validity of IRT (Adler et al., 2006).^ PARSCALE, which is IRT software from Scientific Software International, Inc., was used to calculate estimates of the work limitations based on item responses from the WLQ. These estimates, also known as ability estimates, were then correlated with the raw score estimates calculated from the sum of all the items responses. Concurrent validity, which claims a measurement is valid if the correlation between the new measurement and the valid measurement is greater or equal to .90, was used to determine the validity of IRT methodology for the WLQ. Ability estimates from IRT were found to be somewhat highly correlated with the raw scores from the WLQ (above .80). However, the only subscale which had a high enough correlation for IRT to be considered valid was the time management subscale (r = .90). All other subscales, mental/interpersonal, physical, and output, did not produce valid IRT ability estimates.^ An explanation for these lower than expected correlations can be explained by the outliers found in the sample. Also, acquiescent responding (AR) bias, which is caused by the tendency for people to respond the same way to every question on a questionnaire, and the multidimensionality of the questionnaire (the WLQ is composed of four dimensions and thus four different latent variables) probably had a major impact on the IRT estimates. Furthermore, it is possible that the mental/interpersonal dimension violated the monotonocity assumption of IRT causing PARSCALE to fail to run for these estimates. The monotonicity assumption needs to be checked for the mental/interpersonal dimension. Furthermore, the use of multidimensional IRT methods would most likely remove the AR bias and increase the validity of using IRT to analyze data from the WLQ.^