11 resultados para Research environment
em DigitalCommons@The Texas Medical Center
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
The following is a commentary on an article discussing physical activity in Latino children. It is clear that research is needed to determine the causes of inactivity and develop effective strategies for promoting physical activity in this population. Approaches involving numerous community entities (faith-based, businesses) and the implementation of policies that enhance physical activity participation appear very promising.
Resumo:
A variety of occupational hazards are indigenous to academic and research institutions, ranging from traditional life safety concerns, such as fire safety and fall protection, to specialized occupational hygiene issues such as exposure to carcinogenic chemicals, radiation sources, and infectious microorganisms. Institutional health and safety programs are constantly challenged to establish and maintain adequate protective measures for this wide array of hazards. A unique subset of academic and research institutions are classified as historically Black universities which provide educational opportunities primarily to minority populations. State funded minority schools receive less resources than their non-minority counterparts, resulting in a reduced ability to provide certain programs and services. Comprehensive health and safety services for these institutions may be one of the services compromised, resulting in uncontrolled exposures to various workplace hazards. Such a result would also be contrary to the national health status objectives to improve preventive health care measures for minority populations.^ To determine if differences exist, a cross-sectional survey was performed to evaluate the relative status of health and safety programs present within minority and non-minority state-funded academic and research institutions. Data were obtained from direct mail questionnaires, supplemented by data from publicly available sources. Parameters for comparison included reported numbers of full and part-time health and safety staff, reported OSHA 200 log (or equivalent) values, and reported workers compensation experience modifiers. The relative impact of institutional minority status, institution size, and OSHA regulatory environment, was also assessed. Additional health and safety program descriptors were solicited in an attempt to develop a preliminary profile of the hazards present in this unique work setting.^ Survey forms were distributed to 24 minority and 51 non-minority institutions. A total of 72% of the questionnaires were returned, with 58% of the minority and 78% of the non-minority institutions participating. The mean number of reported full-time health and safety staff for the responding minority institutions was determined to be 1.14, compared to 3.12 for the responding non-minority institutions. Data distribution variances were stabilized using log-normal transformations, and although subsequent analysis indicated statistically significant differences, the differences were found to be predicted by institution size only, and not by minority status or OSHA regulatory environment. Similar results were noted for estimated full-time equivalent health and safety staffing levels. Significant differences were not noted between reported OSHA 200 log (or equivalent) data, and a lack of information provided on workers compensation experience modifiers prevented comparisons on insurance premium expenditures. Other health and safety program descriptive information obtained served to validate the study's presupposition that the inclusion criteria would encompass those organizations with occupational risks from all four major hazard categories. Worker medical surveillance programs appeared to exist at most institutions, but the specific tests completed were not readily identifiable.^ The results of this study serve as a preliminary description of the health and safety programs for a unique set of workplaces have not been previously investigated. Numerous opportunities for further research are noted, including efforts to quantify the relative amount of each hazard present, the further definition of the programs reported to be in place, determination of other means to measure health outcomes on campuses, and comparisons among other culturally diverse workplaces. ^
Resumo:
The built environment is part of the physical environment made by people and for people. Because the built environment is such a ubiquitous component of the environment, it acts as an important pathway in determining health outcomes. Zoning, a type of urban planning policy, is one of the most important mechanisms connecting the built environment to public health. This policy analysis research paper explores how zoning regulations in Austin, Texas promote or prohibit the development of a healthy built environment. A systematic literature review was obtained from Active Living Research, which contained literature published about the relationships between the built environment, physical activity, and health. The results of these studies identified the following four components of the built environment that were associated to health: access to recreational facilities, sprawl and residential density, land use mix, and sidewalks and their walkability. A hierarchy analysis was then performed to demonstrate the association between these aspects of the built environment and health outcomes such as obesity, cardiovascular disease, and general health. Once these associations had been established, the components of the built environment were adapted into the evaluation criteria used to conduct a public health analysis of Austin's zoning ordinance. A total of eighty-eight regulations were identified to be related to these components and their varying associations to human health. Eight regulations were projected to have a negative association to health, three would have both a positive and negative association simultaneously, and nine were indeterminable with the information obtained through the literature review. The remaining sixty-eight regulations were projected to be associated in a beneficial manner to human health. Therefore, it was concluded that Austin's zoning ordinance would have an overwhelmingly positive impact on the public's health based on identified associations between the built environment and health outcomes.^
Resumo:
This study addressed two purposes: (1) to determine the effect of person-environment fit on the psychological well-being of psychiatric aides and (2) to determine what role the coping resources of social support and control have on the above relationship. Two hundred and ten psychiatric aides working in a state hospital in Texas responded to a questionnaire pertaining to these issues.^ Person-environment fit, as a measure of occupational stress, was assessed through a modified version of the Work Environment Scale (WES). The WES subscales used in this study were: involvement, autonomy, job pressure, job clarity, and physical comfort. Psychological well-being was measured with the General Well-Being Schedule which was developed by the National Center for Health Statistics. Co-worker and supervisor support were measured through the WES and finally, control was assessed through Rotter's Locus of Control Scale.^ The results of this study were as follows: (1) all person-environment (p-e) dimensions appeared to have linear relationships with psychological well-being; (2) the p-e fit - well-being relationship did not appear to be confounded by demographic factors; (3) all p-e fit dimensions were significantly related to well-being except for autonomy; (4) p-e fit was more strongly related to well-being than the environmental measure alone; (5) supervisor support and non-work related support were found to have additive effects on the relationship between p-e fit and well-being, however no interaction or buffering effects were observed; (6) locus of control was found to have additive effects in the prediction of well-being and showed interactive effects with work pressure, involvement and physical comfort; and (7) the testing of the overall study model which included many of the components mentioned above yielded an R('2) = .27.^ Implications of these findings are discussed, future research suggested and applications proposed. ^
Resumo:
The purpose of this study was to investigate whether an incongruence between personality characteristics of individuals and concomitant charcteristics of health professional training environments on salient dimensions contributes to aspects of mental health. The dimensions examined were practical-theoretical orientation and the degree of structure-unstructure. They were selected for study as they are particularly important attributes of students and of learning environments. It was proposed that when the demand of the environment is disparate from the proclivities of the individual, strain arises. This strain was hypothesized to contribute to anxiety, depression, and subjective distress.^ Select subscales on the Omnibus Personality Inventory (OPI) were the operationalized measures for the personality component of the dimensions studied. An environmental index was developed to assess students' perceptions of the learning environment on these same dimensions. The Beck Depression Inventory, State-Trait Anxiety Inventory and General Well-Being schedule measured the outcome variables.^ A congruence model was employed to determine person-environment (P-E) interaction. Scores on the scales of the OPI and the environmental index were divided into high, medium, and low based on the range of scores. Congruence was defined as a match between the level of personality need and the complementary level of the perception of the environment. Alternatively, incongruence was defined as a mismatch between the person and the environment. The consistent category was compared to the inconsistent categories by an analysis of variance procedure. Furthermore, analyses of covariance were conducted with perceived supportiveness of the learning environment and life events external to the learning environment as the covariates. These factors were considered critical influences affecting the outcome measures.^ One hundred and eighty-five students (49% of the population) at the College of Optometry at the University of Houston participated in the study. Students in all four years of the program were equally represented in the study. However, the sample differed from the total population on representation by sex, marital status, and undergraduate major.^ The results of the study did not support the hypotheses. Further, after having adjusted for perceived supportiveness and life events external to the learning environment, there were no statistically significant differences between the congruent category and incongruent categories. Means indicated than the study sample experienced significantly lower depression and subjective distress than the normative samples.^ Results are interpreted in light of their utility for future study design in the investigation of the effects of P-E interaction. Emphasized is the question of the feasibility of testing a P-E interaction model with extant groups. Recommendations for subsequent research are proposed in light of the exploratory nature of the methodology. ^
Resumo:
The research project is an extension of a series of administrative science and health care research projects evaluating the influence of external context, organizational strategy, and organizational structure upon organizational success or performance. The research will rely on the assumption that there is not one single best approach to the management of organizations (the contingency theory). As organizational effectiveness is dependent on an appropriate mix of factors, organizations may be equally effective based on differing combinations of factors. The external context of the organization is expected to influence internal organizational strategy and structure and in turn the internal measures affect performance (discriminant theory). The research considers the relationship of external context and organization performance.^ The unit of study for the research will be the health maintenance organization (HMO); an organization the accepts in exchange for a fixed, advance capitation payment, contractual responsibility to assure the delivery of a stated range of health sevices to a voluntary enrolled population. With the current Federal resurgence of interest in the Health Maintenance Organization (HMO) as a major component in the health care system, attention must be directed at maximizing development of HMOs from the limited resources available. Increased skills are needed in both Federal and private evaluation of HMO feasibility in order to prevent resource investment and in projects that will fail while concurrently identifying potentially successful projects that will not be considered using current standards.^ The research considers 192 factors measuring contextual milieu (social, educational, economic, legal, demographic, health and technological factors). Through intercorrelation and principle components data reduction techniques this was reduced to 12 variables. Two measures of HMO performance were identified, they are (1) HMO status (operational or defunct), and (2) a principle components factor score considering eight measures of performance. The relationship between HMO context and performance was analysed using correlation and stepwise multiple regression methods. In each case it has been concluded that the external contextual variables are not predictive of success or failure of study Health Maintenance Organizations. This suggests that performance of an HMO may rely on internal organizational factors. These findings have policy implications as contextual measures are used as a major determinant in HMO feasibility analysis, and as a factor in the allocation of limited Federal funds. ^
Resumo:
Errors in the administration of medication represent a significant loss of medical resources and pose life altering or life threatening risks to patients. This paper considered the question, what impact do Computerized Physician Order Entry (CPOE) systems have on medication errors in the hospital inpatient environment? Previous reviews have examined evidence of the impact of CPOE on medication errors, but have come to ambiguous conclusions as to the impact of CPOE and decision support systems (DSS). Forty-three papers were identified. Thirty-one demonstrated a significant reduction in prescribing error rates for all or some drug types; decreases in minor errors were most often reported. Several studies reported increases in the rate of duplicate orders and failures to remove contraindicated drugs, often attributed to inappropriate design or to an inability to operate the system properly. The evidence on the effectiveness of CPOE to reduce errors in medication administration is compelling though it is limited by modest study sample sizes and designs. ^
Resumo:
The role of physical activity in the promotion of individual and population health has been well documented in research and policy publications. Significant research activities have produced compelling evidence for the support of the positive association between physical activity and improved health. Despite the knowledge about these public health benefits of physical activity, over half of US adults do not engage in physical activity at levels consistent with public health recommendations. Just as physical inactivity is of significant public health concern in the US, the prevalence of obesity (and its attendant co-morbidities) is also increasing among US adults.^ Research suggests racial and ethnic disparities relevant to physical inactivity and obesity in the US. Various studies have shown more favorable outcomes among non-Hispanic whites when compared to other minority groups as far as physical activity and obesity are concerned. The health disparity issue is especially important because Mexican-Americans who are the fastest growing segment of the US population are disproportionately affected by physical inactivity and obesity by a significant margin (when compared to non-Hispanic whites), so addressing the physical inactivity and obesity issues in this group is of significant public health concern. ^ Although the evidence for health benefits of physical activity is substantial, various research questions remain on the potential motivators for engaging in physical activity. One area of emerging interest is the potential role that the built environment may play in facilitating or inhibiting physical activity.^ In this study, based on an ongoing research project of the Department of Epidemiology at the University of Texas M. D. Anderson Cancer Center, we examined the built environment, measured objectively through the use of geographical information systems (GIS), and its association with physical activity and obesity among a cohort of Mexican- Americans living in Harris County, Texas. The overall study hypothesis was that residing in dense and highly connected neighborhoods with mixed land-use is associated with residents’ increased participation in physical activity and lowered prevalence of obesity. We completed the following specific aims: (1) to generate a land-use profile of the study area and create a “walkability index” measure for each block group within the study area; (2) to compare the level of engagement in physical activity between study participants that reside in high walkability index block groups and those from low walkability block groups; (3) to compare the prevalence of obesity between study participants that reside in high walkability index block groups and those from low walkability block groups. ^ We successfully created the walkability index as a form of objective measure of the built environment for portions of Harris County, Texas. We used a variety of spatial and non-spatial dataset to generate the so called walkability index. We are not aware of previous scholastic work of this kind (construction of walkability index) in the Houston area. Our findings from the assessment of relationships among walkability index, physical activity and obesity suggest the following, that: (1) that attempts to convert people to being walkers through health promotion activities may be much easier in high-walkability neighborhoods, and very hard in low-walkability neighborhoods. Therefore, health promotion activities to get people to be active may require supportive environment, walkable in this case, and may not succeed otherwise; and (2) Overall, among individuals with less education, those in the high walkability index areas may be less obese (extreme) than those in the low walkability area. To the extent that this association can be substantiated, we – public health practitioners, urban designers, and policy experts – we may need to start thinking about ways to “retrofit” existing urban forms to conform to more walkable neighborhoods. Also, in this population especially, there may be the need to focus special attention on those with lower educational attainment.^
Resumo:
The findings of this study suggest that while child welfare workers are consistently distracted by competing priorities from unexpected events, most are committed, and to understand perspectives is more inclusive and may improve retention rates. Notably, while it is recognized that permanency decisions are not made in an intellectual, legal or clinical vacuum and certain traditional aspects of the bureaucratic structure do not impact decision making, this study advances the body of knowledge on child welfare decision making. Examined in this study are child welfare case workers’ perceptions of the extent to which the organizational environment influences the permanency decisions they make to reunify or terminate parental rights of children placed out-of-home. This study includes a sample of 95 child welfare social workers employed in three public child welfare agencies in the Baltimore and Washington, DC metropolitan area. It used a cross-sectional research design, employing a survey instrument to examine bureaucratic distraction, role conflict, and supervisory adequacy as contextual factors in the organizational environment's influence on permanency outcome decisions. Implications are made for child welfare policy, practice, and research.
Resumo:
Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.