3 resultados para Requirements Engineering, Requirement Specification
em DigitalCommons@The Texas Medical Center
Resumo:
The aim of this research was to characterize the differentiative requirements of human CD8$\sp{+}$ suppressor lymphocytes. We investigated the role of monocytes in cellular interactions required for generation of T suppressor cells (Ts) in pokeweed mitogen (PWM) stimulated peripheral blood mononuclear cells (PBMC). We observed that the functional activity of CD8$\sp{+}$ T cells was dependent on the concentration of monocytes in the inductive cultures; at concentrations normally present in peripheral blood, PWM stimulation induced potent suppressor activity, whereas under conditions of moderate monocyte depletion the same phenotypic subset of CD8$\sp{+}$ cells enhanced responses. We also demonstrated that differentiation of CD8$\sp{+}$CD28$\sp{-}$ suppressor cells could be mediated by soluble products elaborated by monocytes and CD4$\sp{+}$ cells, identified as PGE$\sb2$ and IFN$\gamma$ respectively. These two signals were required sequentially to cause Ts induction. That is PGE$\sb2$ was required initially, followed by an IFN$\gamma$-dependent differentiative step. We also explored the possibility that PGE$\sb2$ caused modulation of the IFN$\gamma$ receptor number and/or affinity on CD8$\sp{+}$ cells, which might render these cells responsive to the differentiative effect of the IFN$\gamma$-signal. Using radiolabelled $\sp{125}$I-IFN$\gamma$, direct binding assays demonstrated that 10$\sp{-8}$M PGE$\sb2$ selectively increased the number of receptors on the CD8$\sp{+}$ cells. In contrast CD4$\sp{+}$ cells treated similarly exhibited no significant change in their number of IFN$\gamma$ receptors. These results, thus, suggest a relationship between PGE$\sb2$ induced expression of IFN$\gamma$ receptor and the initial requirement for PGE$\sb2$ in IFN$\gamma$-dependent differentiation of Ts cells. Together, our results suggest a crucial role for PGE$\sb2$ and IFN$\gamma$ in regulation of the immune response. Furthermore, such detailed definition of the differentiative requirements for CD8$\sp{+}$ suppressor cells should provide new insight into fundamental mechanisms of immunoregulation. ^
Resumo:
In a study of Lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues--mining, material-processing, and manufacturing, and the human elements of physiology, behavior and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models. ^
Resumo:
Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in assembly of the divisome, a molecular machine composed of 14 known proteins which are all required for cell division. Although the biochemical functions of most divisome proteins are unknown, several of these have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane and is active. ^ We identified a single amino acid change in FtsA, R286W, renamed FtsA*, that completely bypasses the requirement for ZipA in cell division. This and other data suggest that FtsA* is a hyperactive form of FtsA that can replace the multiple functions normally assumed by ZipA, which include stabilization of Z rings, recruitment of downstream cell division proteins, and anchoring the Z ring to the membrane. This is the first example of complete functional replacement of an essential prokaryotic cell division protein by another. ^ Cells expressing ftsA* with a complete deletion of ftsK are viable and divide, although many of these ftsK null cells formed multiseptate chains, suggesting a role in cell separation for FtsK. In addition, strains expressing extra ftsAZ, ftsQ, ftsB, zipA or ftsN, were also able to survive and divide in the absence of ftsK. The cytoplasmic and transmembrane domains of FtsQ were sufficient to allow viability and septum formation to ftsK deleted strains. These findings suggest that FtsK is normally involved in stabilizing the divisome and shares functional overlap with other cell division proteins. ^ As well as permitting the removal of other divisome components, the presence of FtsA* in otherwise wild-type cells accelerated Z-ring assembly, which resulted in a significant decrease in the average length of cells. In support of its role in Z-ring stability, FtsA* suppressed the cell division inhibition caused by overexpressing FtsZ. FtsA* did not affect FtsZ turnover within the Z ring as measured by fluorescence recovery after photobleaching. Turnover of FtsA* in the ring was somewhat faster than wild-type FtsA. Yeast two-hybrid data suggest that FtsA* has an increased affinity for FtsZ relative to wild-type FtsA. These results indicate that FtsA* interacts with FtsZ more strongly, and its enhancement of Z ring assembly may explain why FtsA* can permit survival of cells lacking ZipA or FtsK.^