2 resultados para Representative-consumer model

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary intake is a complex, health-related behavior, and although individual-level theoretical models explain some variation in dietary intake, comprehensive theoretical models such as the ecological framework describe the multiple levels which influence diet-related behaviors. Thus, the ecological framework is a preferred model for designing comprehensive nutrition interventions. While ecological-based nutrition interventions have been described, little work has focused on interventions in the hospital setting. Because hospitals are considered the hallmarks of health, it might seem that hospitals would regularly engage in worksite nutrition promotion; however, recent publications and other anecdotal evidence have indicated otherwise. The first paper of this dissertation systematically reviewed the scientific literature between 1996 and 2012 and identified 13 outcome evaluation trials for hospital-based worksite nutrition interventions. Of these 13 interventions, only one intervention targeted three of the four levels of the ecological framework and no intervention targeted all four levels. Only half of the interventions targeted the physical environment of hospitals, thus warranting more investigation into this specific level of the ecological framework in this setting. ^ A critical type of nutrition-related physical environments is the consumer nutrition environment. Although other tools measure the consumer nutrition environments of stores and restaurants, no tool specifically measured the consumer nutrition environments of hospitals until the CDC developed the Healthy Hospital Environment Scan for Cafeterias, Vending Machines, and Gift Shops (HHES-CVG). The HHES-CVG, a tool which measures the consumer nutrition environments of hospital cafeterias, vending machines, and gifts shops, was released in November 2011, and in the second paper of this dissertation, the reliability of this tool was investigated. Two trained raters visited 39 hospitals across Southern California between February and May 2012, and based on analyses of the raters' findings, the HHES-CVG exhibited strong reliability metrics (inter-observer agreement between 74 and 100%, and an intraclass correlation coefficient of 0.961 for the overall nutrition composite score). Because the HHES-CVG was found to be a reliable tool, the third paper of this dissertation presented HHES-CVG results from the 39 hospitals. Overall, hospitals only scored about one-fourth of the total possible points for the nutrition composite score, indicating that most facilities do not have acceptable consumer nutrition environments. Some of the best practices observed in cafeterias were significantly associated with having a large facility and with having a contracted foodservice operation, but overall nutrition composite score was not associated with any specific facility or operation type. ^ The dissertation concluded that much work is needed in order to improve the consumer nutrition environments of hospitals. Practitioners and healthcare administrators should consider starting with ecological-based interventions addressing all levels including the physical environment.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.