2 resultados para Red meat

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The objective of this study is to investigate the association between processed and unprocessed red meat consumption and prostate cancer (PCa) stage in a homogenous Mexican-American population. Methods: This population-based case-control study had a total of 582 participants (287 cases with histologically confirmed adenocarcinoma of the prostate gland and 295 age and ethnicity-matched controls) that were all residing in the Southeast region of Texas from 1998 to 2006. All questionnaire information was collected using a validated data collection instrument. Statistical Analysis: Descriptive analyses included Student's t-test and Pearson's Chi-square tests. Odds ratios and 95% confidence intervals were calculated to quantify the association between nutritional factors and PCa stage. A multivariable model was used for unconditional logistic regression. Results: After adjusting for relevant covariates, those who consume high amounts of processed red meat have a non-significant increased odds of being diagnosed with localized PCa (OR = 1.60 95% CI: 0.85 - 3.03) and total PCa (OR = 1.43 95% CI: 0.81 - 2.52) but not for advanced PCa (OR = 0.91 95% CI: 1.37 - 2.23). Interestingly, high consumption of carbohydrates shows a significant reduction in the odds of being diagnosed with total PCa and advanced PCa (OR = 0.43 95% CI: 0.24 - 0.77; OR = 0.27 95% CI: 0.10 - 0.71, respectively). However, consuming high amounts of energy from protein and fat was shown to increase the odds of being diagnosed with advanced PCa (OR = 4.62 95% CI: 1.69 - 12.59; OR = 2.61 95% CI: 1.04 - 6.58, respectively). Conclusion: Mexican-Americans who consume high amounts of energy from protein and fat had increased odds of being diagnosed with advanced PCa, while high amounts of carbohydrates reduced the odds of being diagnosed with total and advanced PCa.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated cross-sectional associations between intakes of zinc, magnesium, heme- and non heme iron, beta-carotene, vitamin C and vitamin E and inflammation and subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). We also investigated prospective associations between those micronutrients and incident MetS, T2D and CVD. Participants between 45-84 years of age at baseline were followed between 2000 and 2007. Dietary intake was assessed at baseline using a 120-item food frequency questionnaire. Multivariable linear regression and Cox proportional hazard regression models were used to evaluate associations of interest. Dietary intakes of non-heme iron and Mg were inversely associated with tHcy concentrations (geometric means across quintiles: 9.11, 8.86, 8.74, 8.71, and 8.50 µmol/L for non-heme iron, and 9.20, 9.00, 8.65, 8.76, and 8.33 µmol/L for Mg; ptrends <0.001). Mg intake was inversely associated with high CC-IMT; odds ratio (95% CI) for extreme quintiles 0.76 (0.58, 1.01), ptrend: 0.002. Dietary Zn and heme-iron were positively associated with CRP (geometric means: 1.73, 1.75, 1.78, 1.88, and 1.96 mg/L for Zn and 1.72, 1.76, 1.83, 1.86, and 1.94 mg/L for heme-iron). In the prospective analysis, dietary vitamin E intake was inversely associated with incident MetS and with incident CVD (HR [CI] for extreme quintiles - MetS: 0.78 [0.62-0.97] ptrend=0.01; CVD: 0.69 [0.46-1.03]; ptrend =0.04). Intake of heme-iron from red meat and Zn from red meat, but not from other sources, were each positively associated with risk of CVD (HR [CI] - heme-iron from red meat: 1.65 [1.10-2.47] ptrend = 0.01; Zn from red meat: 1.51 [1.02 - 2.24] ptrend =0.01) and MetS (HR [CI] - heme-iron from red meat: 1.25 [0.99-1.56] ptrend =0.03; Zn from red meat: 1.29 [1.03-1.61]; ptrend = 0.04). All associations evaluated were similar across different strata of gender, race-ethnicity and alcohol intake. Most of the micronutrients investigated were not associated with the outcomes of interest in this multi-ethnic cohort. These observations do not provide consistent support for the hypothesized association of individual nutrients with inflammatory markers, MetS, T2D, or CVD. However, nutrients consumed in red meat, or consumption of red meat as a whole, may increase risk of MetS and CVD.^