3 resultados para Recycled aggregates of concrete
em DigitalCommons@The Texas Medical Center
Resumo:
Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.
Resumo:
Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (off-cell) spike activity, excitation of type I(e) (on-cell) spike activity, decreased spike activity in type III(i) inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type I(i) interneurons and pairs of type I(e) interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between I(e) and I(i) interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of I(e) and pairs of I(i) interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of I(e) and I(i) interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in I(e) and I(i) interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination.
Resumo:
Chronic inflammation is an established risk factor in the pathogenesis of many cancers. Pancreatic ductal adenocarcinoma, a malignancy with a particularly dismal prognosis, is no exception. Cyclooxygenase-2, a key enzyme induced by tissue injury, has a critical role in the generation of bioactive lipids known as prostaglandins. COX-2 overexpression is a frequent finding in pancreatic cancer, chronic pancreatitis and pancreatic intraepithelial neoplasias. To explore mechanisms through which chronic inflammation establishes and maintains a protumorigenic environment, we designed a mouse model overexpressing COX-2 in pancreatic parenchyma (BK5.COX-2 mice). We discovered that constitutive expression of COX-2 has a number of important sequelae, including upregulation of additional eicosanoid-generating enzymes and proinflammatory cytokines. Many of these molecular alterations precede the onset of significant histopathological changes. Increased levels of prostaglandins E2, D2, and F2α, 5-, 12-, and 15-hydroxyeiosatetraenoic acid (HETEs) were documented in tumors and pancreata of younger transgenic mice. Using a TaqMan™ Mouse Immune Panel, we detected elevated mRNAs for a number of proinflammatory cytokines (e.g., TNFα, IL-1β, IL-6). ^ Histological examination revealed early changes in the pancreas with similarities to human chronic pancreatitis, including loss of acinar cells, appearance of metaplastic ducts, and increased deposition of stroma. As the lesions progress, features typical of dysplastic and neoplastic cells emerged within the metaplastic ductal complexes, including cellular and nuclear atypia, crowding of cells, and loss of normal tissue architecture. The amount of fibroinflammatory stroma increased considerably; numerous small vessels were evident. A number of immunocytes from both the myeloid and lymphoid lineages were identified in transgenic pancreata. Neutrophils were the earliest to infiltrate, followed shortly by macrophages and mast cells. B and T cells generally began to appear by 8–12 weeks, and organized aggregates of lymphoid cells were often found in advanced lesions. ^ We tested the efficacy of several chemopreventive agents in this model, including celecoxib, a COX-2 selective inhibitor, pentoxifylline, a cytokine inhibitor, curcumin, a polyphenol with antioxidant and anti-inflammatory properties, and GW2974, a dual EGFR/ErbB2 inhibitor. Effects on lesion development were modest in the GW2974 and pentoxifylline treated groups, but significant prevention effects were observed with curcumin and celecoxib. ^