3 resultados para Receptors, CCR2 -- metabolism

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A colony of rabbits has been developed at the University of Texas Medical School at Houston that is resistant to dietary-induced hypercholesterolemia. The liver of resistant rabbits had higher levels of ($\sp{125}$I) $\beta$-VLDL binding and 3-hydroxy-3-methylglutaryl (HMGCoA) reductase activity, but lower acyl coenzyme A:cholesterol acyltransferase (ACAT) activity than normal rabbits. Direct quantitation of intracellular cholesterol content of the liver revealed that the resistant rabbits had $<$10% of the intracellular free cholesterol present in normal rabbits. Fibroblasts isolated from normal and resistant rabbits exhibited differences in ($\sp{125}$I) LDL binding, HMGCoA reductase activity and ACAT activity that were similar to those found in the liver. No structural differences were found in the LDL receptor of normal and resistant fibroblasts that would account for the increased binding capacity of the resistant cells. The regulation of LDL receptor levels by exogenous oxygenated sterols was similar in normal and resistant fibroblasts. The regulation of LDL receptor binding capacity by LDL was attenuated in the resistant compared to normal fibroblasts, suggesting that the resistant fibroblasts have an alternate pathway for processing lipoprotein-derived cholesterol. Sterol-balance studies revealed that the cholesterol-fed resistant rabbits increased lithocholic acid excretion compared to the basal state, and had higher levels of deoxycholic acid excretion than cholesterol-fed normal rabbits. In addition, the specific activity and mRNA levels of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H) were higher in resistant rabbits than normal rabbits, suggesting that the increased bile acid excretion was due to an increase in bile acid synthesis. Increased clearance of cholesterol relieves the negative feedback inhibition cholesterol exerts on expression of the LDL receptor. The number of cell surface LDL receptors is then increased in resistant rabbits and allows rapid clearance of lipoproteins from the plasma compartment, thereby reducing plasma cholesterol levels. The low intracellular cholesterol level also relieves the negative feedback inhibition cholesterol exerts on HMGCoA reductase. Increased synthesis of cholesterol from acetate provides cells with cholesterol for bile acid synthesis and/or homeostasis. The activity of ACAT is then decreased due to the flux of cholesterol through the bile acid synthetic pathways. ^