6 resultados para Ratio Test Integer Aperture (RTIA)
em DigitalCommons@The Texas Medical Center
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^
Resumo:
Monte Carlo simulation has been conducted to investigate parameter estimation and hypothesis testing in some well known adaptive randomization procedures. The four urn models studied are Randomized Play-the-Winner (RPW), Randomized Pôlya Urn (RPU), Birth and Death Urn with Immigration (BDUI), and Drop-the-Loses Urn (DL). Two sequential estimation methods, the sequential maximum likelihood estimation (SMLE) and the doubly adaptive biased coin design (DABC), are simulated at three optimal allocation targets that minimize the expected number of failures under the assumption of constant variance of simple difference (RSIHR), relative risk (ORR), and odds ratio (OOR) respectively. Log likelihood ratio test and three Wald-type tests (simple difference, log of relative risk, log of odds ratio) are compared in different adaptive procedures. ^ Simulation results indicates that although RPW is slightly better in assigning more patients to the superior treatment, the DL method is considerably less variable and the test statistics have better normality. When compared with SMLE, DABC has slightly higher overall response rate with lower variance, but has larger bias and variance in parameter estimation. Additionally, the test statistics in SMLE have better normality and lower type I error rate, and the power of hypothesis testing is more comparable with the equal randomization. Usually, RSIHR has the highest power among the 3 optimal allocation ratios. However, the ORR allocation has better power and lower type I error rate when the log of relative risk is the test statistics. The number of expected failures in ORR is smaller than RSIHR. It is also shown that the simple difference of response rates has the worst normality among all 4 test statistics. The power of hypothesis test is always inflated when simple difference is used. On the other hand, the normality of the log likelihood ratio test statistics is robust against the change of adaptive randomization procedures. ^
Resumo:
Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^
Resumo:
BACKGROUND: Follow-up of abnormal outpatient laboratory test results is a major patient safety concern. Electronic medical records can potentially address this concern through automated notification. We examined whether automated notifications of abnormal laboratory results (alerts) in an integrated electronic medical record resulted in timely follow-up actions. METHODS: We studied 4 alerts: hemoglobin A1c > or =15%, positive hepatitis C antibody, prostate-specific antigen > or =15 ng/mL, and thyroid-stimulating hormone > or =15 mIU/L. An alert tracking system determined whether the alert was acknowledged (ie, provider clicked on and opened the message) within 2 weeks of transmission; acknowledged alerts were considered read. Within 30 days of result transmission, record review and provider contact determined follow-up actions (eg, patient contact, treatment). Multivariable logistic regression models analyzed predictors for lack of timely follow-up. RESULTS: Between May and December 2008, 78,158 tests (hemoglobin A1c, hepatitis C antibody, thyroid-stimulating hormone, and prostate-specific antigen) were performed, of which 1163 (1.48%) were transmitted as alerts; 10.2% of these (119/1163) were unacknowledged. Timely follow-up was lacking in 79 (6.8%), and was statistically not different for acknowledged and unacknowledged alerts (6.4% vs 10.1%; P =.13). Of 1163 alerts, 202 (17.4%) arose from unnecessarily ordered (redundant) tests. Alerts for a new versus known diagnosis were more likely to lack timely follow-up (odds ratio 7.35; 95% confidence interval, 4.16-12.97), whereas alerts related to redundant tests were less likely to lack timely follow-up (odds ratio 0.24; 95% confidence interval, 0.07-0.84). CONCLUSIONS: Safety concerns related to timely patient follow-up remain despite automated notification of non-life-threatening abnormal laboratory results in the outpatient setting.
Resumo:
BACKGROUND: Given the fragmentation of outpatient care, timely follow-up of abnormal diagnostic imaging results remains a challenge. We hypothesized that an electronic medical record (EMR) that facilitates the transmission and availability of critical imaging results through either automated notification (alerting) or direct access to the primary report would eliminate this problem. METHODS: We studied critical imaging alert notifications in the outpatient setting of a tertiary care Department of Veterans Affairs facility from November 2007 to June 2008. Tracking software determined whether the alert was acknowledged (ie, health care practitioner/provider [HCP] opened the message for viewing) within 2 weeks of transmission; acknowledged alerts were considered read. We reviewed medical records and contacted HCPs to determine timely follow-up actions (eg, ordering a follow-up test or consultation) within 4 weeks of transmission. Multivariable logistic regression models accounting for clustering effect by HCPs analyzed predictors for 2 outcomes: lack of acknowledgment and lack of timely follow-up. RESULTS: Of 123 638 studies (including radiographs, computed tomographic scans, ultrasonograms, magnetic resonance images, and mammograms), 1196 images (0.97%) generated alerts; 217 (18.1%) of these were unacknowledged. Alerts had a higher risk of being unacknowledged when the ordering HCPs were trainees (odds ratio [OR], 5.58; 95% confidence interval [CI], 2.86-10.89) and when dual-alert (>1 HCP alerted) as opposed to single-alert communication was used (OR, 2.02; 95% CI, 1.22-3.36). Timely follow-up was lacking in 92 (7.7% of all alerts) and was similar for acknowledged and unacknowledged alerts (7.3% vs 9.7%; P = .22). Risk for lack of timely follow-up was higher with dual-alert communication (OR, 1.99; 95% CI, 1.06-3.48) but lower when additional verbal communication was used by the radiologist (OR, 0.12; 95% CI, 0.04-0.38). Nearly all abnormal results lacking timely follow-up at 4 weeks were eventually found to have measurable clinical impact in terms of further diagnostic testing or treatment. CONCLUSIONS: Critical imaging results may not receive timely follow-up actions even when HCPs receive and read results in an advanced, integrated electronic medical record system. A multidisciplinary approach is needed to improve patient safety in this area.
Resumo:
The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^