32 resultados para Rapid Early Response
em DigitalCommons@The Texas Medical Center
Resumo:
Retinoids are known to inhibit proliferation of and induce terminal differentiation of many normal and transformed cells. It has been postulated that retinoids exert their effect by altering gene expression. HL-60 cells and macrophages both respond to retinoic acid action by the rapid induction of the enzyme tissue transglutaminase. The induction has been shown to be due to increased transcription of the transglutaminase gene. The first part of the dissertation studied the structure-function relationship of retinoid-regulated transglutaminase induction, differentiation and proliferation in HL-60 cells using retinoid analogs. The results indicated strict structural constraints and a strong structure-function correlation between transglutaminase induction and differentiation; those retinoids that induced transglutaminase also induced differentiation, those analogs that did not induce transglutaminase could not induce differentiation. The ability of the retinoids to induce transglutaminase in HL-60 cells was paralleled in macrophages. However, the antiproliferative effect of the retinoids displayed less stringent structural constraints than their differentiation- and transglutaminase-inducing properties. Specifically all the retinoids were able to inhibit proliferation to varying extents. It is concluded that the induction of transglutaminase and of differentiation by retinoids is mediated by receptors. While receptor mediation cannot be entirely ruled out, with the current data no definitive statement can be made about the antiproliferative activity of retinoids. Also, the concordance in the ability of the retinoids to induce transglutaminase and the ability to induce differentiation of HL-60 cells suggests that the former is an early response of the cells to retinoids and differentiation a later consequence on the same pathway. Using the induction of transglutaminase as an index of the direct, or primary, effect of retinoids on gene expression, the second part of the dissertation investigates, by 2D gel electrophoresis, the alteration in the rates of synthesis of other proteins in macrophages and HL-60 cells in response to short incubations with retinoic acid. Any changes in parallel with transglutaminase were taken to indicate proteins directly under the control of retinoic acid. It is concluded that retinoic acid regulates the expression of a circumscribed set of genes in a cell-specific manner. The results support the hypothesis that retinoids exert their multiple effects on myeloid cells, in part, by receptor-mediated alternations in gene expression. ^
Resumo:
Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^
Resumo:
Group sequential methods and response adaptive randomization (RAR) procedures have been applied in clinical trials due to economical and ethical considerations. Group sequential methods are able to reduce the average sample size by inducing early stopping, but patients are equally allocated with half of chance to inferior arm. RAR procedures incline to allocate more patients to better arm; however it requires more sample size to obtain a certain power. This study intended to combine these two procedures. We applied the Bayesian decision theory approach to define our group sequential stopping rules and evaluated the operating characteristics under RAR setting. The results showed that Bayesian decision theory method was able to preserve the type I error rate as well as achieve a favorable power; further by comparing with the error spending function method, we concluded that Bayesian decision theory approach was more effective on reducing average sample size.^
Resumo:
Several studies have shown that children with spina bifida meningomyelocele (SBM) and hydrocephalus have attention problems on parent ratings and difficulties in stimulus orienting associated with a posterior brain attention system. Less is known about response control and inhibition associated with an anterior brain attention system. Using the Gordon Vigilance Task (Gordon, 1983), we studied error rate, reaction time, and performance over time for sustained attention, a key anterior attention function, in 101 children with SBM, 17 with aqueductal stenosis (AS; another condition involving congenital hydrocephalus), and 40 typically developing controls (NC). In SBM, we investigated the relation between cognitive attention and parent ratings of inattention and hyperactivity and explored the impact of medical variables. Children with SBM did not differ from AS or NC groups on measures of sustained attention, but they committed more errors and responded more slowly. Approximately one-third of the SBM group had attention symptoms, although parent attention ratings were not associated with task performance. Hydrocephalus does not account for the attention profile of children with SBM, which also reflects the distinctive brain dysmorphologies associated with this condition.
Resumo:
Quantitative imaging with 18F-FDG PET/CT has the potential to provide an in vivo assessment of response to radiotherapy (RT). However, comparing tissue tracer uptake in longitudinal studies is often confounded by variations in patient setup and potential treatment induced gross anatomic changes. These variations make true response monitoring for the same anatomic volume a challenge, not only for tumors, but also for normal organs-at-risk (OAR). The central hypothesis of this study is that more accurate image registration will lead to improved quantitation of tissue response to RT with 18F-FDG PET/CT. Employing an in-house developed “demons” based deformable image registration algorithm, pre-RT tumor and parotid gland volumes can be more accurately mapped to serial functional images. To test the hypothesis, specific aim 1 was designed to analyze whether deformably mapping tumor volumes rather than aligning to bony structures leads to superior tumor response assessment. We found that deformable mapping of the most metabolically avid regions improved response prediction (P<0.05). The positive predictive power for residual disease was 63% compared to 50% for contrast enhanced post-RT CT. Specific aim 2 was designed to use parotid gland standardized uptake value (SUV) as an objective imaging biomarker for salivary toxicity. We found that relative change in parotid gland SUV correlated strongly with salivary toxicity as defined by the RTOG/EORTC late effects analytic scale (Spearman’s ρ = -0.96, P<0.01). Finally, the goal of specific aim 3 was to create a phenomenological dose-SUV response model for the human parotid glands. Utilizing only baseline metabolic function and the planned dose distribution, predicting parotid SUV change or salivary toxicity, based upon specific aim 2, became possible. We found that the predicted and observed parotid SUV relative changes were significantly correlated (Spearman’s ρ = 0.94, P<0.01). The application of deformable image registration to quantitative treatment response monitoring with 18F-FDG PET/CT could have a profound impact on patient management. Accurate and early identification of residual disease may allow for more timely intervention, while the ability to quantify and predict toxicity of normal OAR might permit individualized refinement of radiation treatment plan designs.
Resumo:
CREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells. In the present study, we report that RA up-regulates CREB gene expression and that, using 5'-serial deletion promoter analysis and mutagenesis analyses, two Sp1 (specificity protein 1)-binding sites located at nt -217 and -150, which flank the transcription initiation site, are essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nt -119 and -98 contributed to basal promoter activity. Interestingly, RA also up-regulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using siRNA (small interfering RNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA up-regulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in up-regulating human CREB gene expression. This result implies that co-operation of these two transcription factors plays a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells.
Resumo:
Despite rapid to-and-fro motion of the retinal image that results from their incessant involuntary eye movements, persons with infantile nystagmus (IN) rarely report the perception of motion smear. We performed two experiments to determine if the reduction of perceived motion smear in persons with IN is associated with an increase in the speed of the temporal impulse response. In Experiment 1, increment thresholds were determined for pairs of successively presented flashes of a long horizontal line, presented on a 65-cd/m2 background field. The stimulus-onset asynchrony (SOA) between the first and second flash varied from 5.9 to 234 ms. In experiment 2, temporal contrast sensitivity functions were determined for a 3-cpd horizontal square-wave grating that underwent counterphase flicker at temporal frequencies between 1 and 40 Hz. Data were obtained for 2 subjects with predominantly pendular IN and 8 normal observers in Experiment 1 and for 3 subjects with IN and 4 normal observers in Experiment 2. Temporal impulse response functions (TIRFs) were estimated as the impulse response of a linear second-order system that provided the best fit to the increment threshold data in Experiment 1 and to the temporal contrast sensitivity functions in Experiment 2. Estimated TIRFs of the subjects with pendular IN have natural temporal frequencies that are significantly faster than those of normal observers (ca. 13 vs. 9 Hz), indicating an accelerated temporal response to visual stimuli. This increase in response speed is too small to account by itself for the virtual absence of perceived motion smear in subjects with IN, and additional neural mechanisms are considered.
Resumo:
Tuberculosis (TB) remains a major public health burden. The immunocompetant host responds to Mycobacterium tuberculosis (MTB) infection by the formation of granulomas, which initially prevent uncontrolled bacterial proliferation and dissemination. However, increasing evidence suggests that granuloma formation promotes persistence of the organism by physically separating infected cells from effector lymphocytes and by inducing a state of non-replicating persistence in the bacilli, making them resistant to the action of antibiotics. Additionally, immune-mediated tissue destruction likely facilitates disease transmission. The granulomatous response is in part due to mycobacterial glycolipid antigens. Therefore, studies were first undertaken to determine the innate mechanisms of mycobacterial cord factor trehalose-6’6-dimycolate (TDM) on granuloma formation. Investigations using knock-out mice suggest that TNF-a is involved in the initiation of the granulomatous response, complement factor C5a generates granuloma cohesiveness, and IL-6 is necessary for maintenance of an established granulomatous responses. Studies were next performed to determine the ability of lactoferrin to modulate the immune response and pathology to mycobacterial cord factor. Lactoferrin is an iron-binding glycoprotein with immunomodulatory properties that decrease tissue damage and promote Th1 responses. Mice challenged with TDM and treated with lactoferrin had decreased size and numbers of granulomas at the peak of the granulomatous response, accompanied by increased IL-10 and TGF-b production. Finally, the ability of lactoferrin to serve as a novel therapeutic for the treatment of TB was performed by aerosol challenging mice with MTB and treating them with lactoferrin added to the drinking water. Mice given tap water had lung log10 CFUs of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7) and mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Total lung inflammation in lactoferrin treated mice was significantly decreased, with fewer areas of macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. The lungs of lactoferrin treated mice had increased CD4+ IFN-g+ cells and IL-17 producing cells on ELISpot analysis. It is hypothesized that lactoferrin decreases bacterial burden during MTB infection by early induction of Th1 responses.
Resumo:
The research literature on adolescent pregnancy indicates a relationship between early prenatal care and positive pregnancy outcomes, yet fewer than half of pregnant teenagers seek prenatal care in the first trimester of pregnancy. Although social support theory speculates that there should be a relationship between support and health outcomes, available studies do not reflect the processes by which pregnant adolescents use their social resources in making decisions about their pregnancies. This study describes the processes by which the adolescent comes to accept the reality of her pregnancy.^ Drawing from the social-psychological theories of illness behavior and symbolic interactionism, this study examines the symptom diagnosis and help seeking behavior of the pregnant adolescent. This approach describes how the adolescent interprets events and draws conclusions based on her social reality.^ Interviews were conducted with ten young women, aged 15-17, who had recently delivered a first child. Onset of prenatal care ranged from the third month to the seventh month. None were married, and all but two lived with a parent. All but one were currently in school. Initial unstructured interviews were attempted to construe the modes of expression of the young women regarding the event of pregnancy. Subsequent interviews elicited the processes of recognition and explanation of symptoms of pregnancy.^ Analysis revealed a consistent natural history in the subjects' experiences as they come to accept the reality of pregnancy. Symptom appraisal and definition involves noticing changes in themselves, and evaluating and attempting to find suitable explanations for these symptoms. Lay consultation from friends and family aids in identifying the symptoms and to receive suggestions for treatment. It is at this point that prenatal care is usually initiated. Finally the young women describe the integration of pregnancy into their belief systems. ^
Resumo:
Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^
Resumo:
Recently it has been proposed that the evaluation of effects of pollutants on aquatic organisms can provide an early warning system of potential environmental and human health risks (NRC 1991). Unfortunately there are few methods available to aquatic biologists to conduct assessments of the effects of pollutants on aquatic animal community health. The primary goal of this research was to develop and evaluate the feasibility of such a method. Specifically, the primary objective of this study was to develop a prototype rapid bioassessment technique similar to the Index of Biotic Integrity (IBI) for the upper Texas and Northwestern Gulf of Mexico coastal tributaries. The IBI consists of a series of "metrics" which describes specific attributes of the aquatic community. Each of these metrics are given a score which is then subtotaled to derive a total assessment of the "health" of the aquatic community. This IBI procedure may provide an additional assessment tool for professionals in water quality management.^ The experimental design consisted primarily of compiling previously collected data from monitoring conducted by the Texas Natural Resource Conservation Commission (TNRCC) at five bayous classified according to potential for anthropogenic impact and salinity regime. Standardized hydrological, chemical, and biological monitoring had been conducted in each of these watersheds. The identification and evaluation of candidate metrics for inclusion in the estuarine IBI was conducted through the use of correlation analysis, cluster analysis, stepwise and normal discriminant analysis, and evaluation of cumulative distribution frequencies. Scores of each included metric were determined based on exceedances of specific percentiles. Individual scores were summed and a total IBI score and rank for the community computed.^ Results of these analyses yielded the proposed metrics and rankings listed in this report. Based on the results of this study, incorporation of an estuarine IBI method as a water quality assessment tool is warranted. Adopted metrics were correlated to seasonal trends and less so to salinity gradients observed during the study (0-25 ppt). Further refinement of this method is needed using a larger more inclusive data set which includes additional habitat types, salinity ranges, and temporal variation. ^
Resumo:
The objective of this study is to test the hypothesis that partial agonists produce less desensitization because they generate less of the active conformation of the $\beta\sb2$-adrenergic receptor ($\beta$AR) (R*) and in turn cause less $\beta$AR phosphorylation by beta adrenergic receptor kinase ($\beta$ARK) and less $\beta$AR internalization. In the present work, rates of desensitization, internalization, and phosphorylation caused by a series of $\beta$AR agonists were correlated with a quantitative measure, defined as coupling efficiency, of agonist-dependent $\beta$AR activation of adenylyl cyclase. These studies were preformed in HEK-293 cells overexpressing the $\beta$AR with hemagglutinin (HA) and 6-histidine (6HIS) epitopes introduced into the N- and C-termini respectively. Agonists chosen provided a 95-fold range of coupling efficiencies, and, relative to epinephrine, the best agonist, (100%) were fenoterol (42%), albuterol (4.9%), dobutamine (2.5%) and ephedrine (1.1%). At concentrations of these agonists yielding $>$90% receptor occupancy, the rate and extent of the rapid phase (0-30 min) of agonist induced desensitization of adenylyl cyclase followed the same order as coupling efficiency, that is, epinephrine $\ge$ fitnoterol $>$ albuterol $>$ dobutamine $>$ ephedrine. The rate of internalization, measured by a loss of surface receptors during desensitization, with respect to these agonists also followed the same order as the desensitization and exhibited a slight lag. Like desensitization and internalization, $\beta$AR phosphorylation exhibited a dependency on agonist strength. The two strongest agonists epinephrine and fenoterol provoked 11 to 13 fold increases in the level of $\beta$AR phosphorylation after just 1 min, whereas the weakest agonists dobutamine and ephedrine caused only 3 to 4 fold increases in phosphorylation. With longer treatment times, the level of $\beta$AR phosphorylation declined with the strong agonists, but progressively increased with the weaker partial agonists. The major conclusion drawn from this study is that the occupancy-dependent rate of receptor phosphorylation increases with agonist coupling efficiencies and that this is sufficient to explain the desensitization, internalization, and phosphorylation data obtained.^ The mechanism of activation and desensitization by the partial $\beta$AR agonist salmeterol was also examined in this study. This drug is extremely hydrophobic and its study presents possibly unique problems. To determine whether salmeterol induces desensitization of the $\beta$AR its action has been studied using our system. Employing the use of reversible antagonists it was found that salmeterol, which has an estimated coupling efficiency near that of albuterol caused $\beta$AR desensitization. This desensitization was much reduced relative to epinephrine. Consistent with its coupling efficiency, it was found to be similar to albuterol in its ability to induce internalization and phosphorylation of the $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
HIV can enter the body through Langerhans cells, dendritic cells, and macrophages in skin mucosa, and spreads by lysis or by syncytia. Since UVL induces of HIV-LTR in transgenic mice mid in cell lines in vitro, we hypothesized that UVB may affect HIV in people and may affect HIV in T cells in relation to dose, apoptosis, and cytokine expression. To determine whether HIV is induced by UVL in humans, a clinical study of HIV+ patients with psoriasis or pruritus was conducted during six weeks of UVB phototherapy, Controls were HIV-psoriasis patients receiving UVB and HIV+ KS subjects without UVB.Blood and skin biopsy specimens were collected at baseline, weeks 2 and 6, and 4 weeks after UVL. AIDS-related skin diseases showed unique cytokine profiles in skin and serum at baseline. In patients and controls on phototherapy, we observed the following: (1) CD4+ and CD8+ T cell numbers are not significantly altered during phototherapy, (2) p24 antigen levels, and also HIV plasma levels increase in patients not on antiviral therapy, (3) HIV-RNA levels in serum or plasma. (viral load) can either increase or decrease depending on the patient's initial viral load, presence of antivirals, and skin type, (4) HIV-RNA levels in the periphery are inversely correlated to serum IL-10 and (5) HIV+ cell in skin increase after UVL at 2 weeks by RT-PCR in situ hybridization mid we negatively correlated with peripheral load. To understand the mechanisms of UVB mediated HIV transcription, we treated Jurkat T cell lines stably transfected with an HIV-LTR-luciferase plasmid only or additionally with tat-SV-40 early promoter with UVB (2 J/m2 to 200 J/m2), 50 to 200 ng/ml rhIL-10, and 10 μg/ml PHA as control. HIV promoter activity was measured by luciferase normalized to protein. Time points up to 72 hours were analyzed for HIV-LTR activation. HIV-LTR activation had the following properties: (1) requires the presence of Tat, (2) occurs at 24 hours, and (3) is UVB dose dependent. Changes in viability by MTS (3-(4,5-dimethyhhiazol-2-y1)-5-(3-carboxymethoxyphonyl)-2-(4-sulfophenyl)-2H-tetrazolium) mixed with PMS (phenazine methosulfate) solution and apoptosis by propidium iodide and annexin V using flow cytometry (FC) were seen in irradiated Jurkat cells. We determined that (1) rhIL-10 moderately decreased HIV-LTR activation if given before radiation and greatly decreases it when given after UVB, (2) HIV-LTR activation was low at doses of greater than 70 J/m2, compared to activation at 50 J/m2. (Abstract shortened by UMI.)^
Resumo:
1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] exerts pleiotropic effects on osteoblasts via both long-term nuclear receptor-mediated and rapid membrane-initiated pathways during bone remodeling and mineral homeostasis. This study explored the membrane transducers that mediate rapid effects of 1,25(OH)2D3 on osteoblasts, including sphingomyelinase (SMase) and L-type voltage sensitive calcium channels (VSCCs). ^ It was previously demonstrated that 1,25(OH)2D3 stimulates transmembrane influx of Ca2+ through VSCCs in ROS 17/2.8 osteoblasts, however the molecular identity of 1,25(OH)2D 3-regulated VSCC has not been known. In this study, on the basis of in vitro tests of three unique ribozymes specifically cleaving a1C mRNA, I transfected ROS 17/2.8 cells with vectors coding recombinant ribozyme modified with U1 snRNA structure, and successfully selected stable clonal cells in which the expression of a1C was strikingly reduced. Ca2+ influx studies in these cells compared to control transfectants showed selective attenuation of depolarization- and 1,25(OH)2D3-regulated Ca2+ responses. These results allow us to conclude that the cardiac ( a1C ) subtype of the L-type VSCC is the major membrane transducer of Ca 2+ influx in osteoblasts. ^ I also demonstrated that 1,25(OH)2D3 induces a rapid hydrolysis of membrane sphingomyelin (SM) in ROS 17/2.8 cells, with the concomitant generation of ceramide, detectable at 15 minute, and maximal at 1 hour after addition. Sphingosine, sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPC), downstream products of SM hydrolysis, but not ceramide, elicit Ca 2+ release from intracellular stores. Considering ceramide, sphingosine, and SPP as second messengers modulating intracellular kinases or phosphatases, these findings implicate sphingolipid-signaling pathways in transducing rapid effects of 1,25(OH)2D3 on osteoblasts. In structure/function analyses of sphingolipid signaling, it was observed that psychosine elicits Ca2+ release from intracellular stores. This challenges the dogma that sphingosine phosphorylation permits mobilization of Ca2+ , because psychosine is a sphingosine analog galactosylated at 1-carbon, preventing phosphorylation at that site. Psychosine is the pathological metabolite found in patients with Krabbe's disease, suggesting that psychosine disrupts the physiological sphingolipid signaling by chronic release of Ca2+ from intracellular stores. ^ Slower SM turnover than Ca2+ influx through VSCCs in response to 1,25(OH)2D3 demonstrates ceramide does not mediate the 1,25(OH)2D3-induced Ca2+ signaling, a conclusion endorsed further by the failure of ceramide to induce Ca 2+ signaling. ^
Resumo:
Changes in the levels of intracellular calcium mediate multiple biological effects, including apoptosis, in some tumor cells. Early studies demonstrated that prostate cancer cells are highly sensitive to alterations in the levels of their intracellular calcium pools. Furthermore, it has been established that apoptosis in prostate cancer could be initiated through calcium-selective ionophores, or inhibitors of intracellular calcium pumps. High sensitivity to changes in intracellular calcium levels may therefore be exploited as a novel mechanism for controlling prostate cancer apoptotic thresholds; however, the mechanisms associated with this process are poorly understood. To investigate the role of calcium as a mediator of prostate cancer cell death and its effects on caspase activation, LNCaP and PC-3 cell response to the calcium ionophore A23187, were examined. LNCaP cells were highly sensitive to changes in intracellular calcium, and subtoxic concentrations of A23187 facilitated apoptosis initiated by cytokines (TNF or TRAIL). In contrast, PC-3 cell death was not affected by A23187 or cytokines. A23187 caused rapid and concentration-dependent activation of calpain in LNCaP (but not PC-3 cells) which correlated with cleavage of calpain substrates caspase-7 and PTP1B. Cleavage of PTP1B from a 50 kDa to 42 kDa protein correlated with its translocation from the endoplasmic reticulum to the cytosol and with inhibition of tyrosine phosphorylation. Caspase-7 was cleaved from a 35 kDa to 30 kDa protein in response to A23187 in LNCaP (but not PC-3) cells and correlated with activation of both upstream and downstream caspases. Extracts from A23187-treated LNCaP cells, or PC-3 cells transiently transfected with calpain, mediated similar processing of in vitro transcribed and translated (TNT) caspase-7. In vitro processing of caspase-7 correlated with its proteolytic activation, which was inhibited by calpain inhibitor (calpeptin) and to some degree, by caspase inhibitors (zVAD, DEVD). Together, these results suggest that calpain is directly involved in calcium-mediated apoptosis of prostate cancer cells through activation and cleavage of caspase-7 and other substrates. Loss of calpain activation may therefore play a critical role in apoptotic resistance of some prostate cancer cells. ^