11 resultados para Random coefficient logit (RCL) model

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health departments, research institutions, policy-makers, and healthcare providers are often interested in knowing the health status of their clients/constituents. Without the resources, financially or administratively, to go out into the community and conduct health assessments directly, these entities frequently rely on data from population-based surveys to supply the information they need. Unfortunately, these surveys are ill-equipped for the job due to sample size and privacy concerns. Small area estimation (SAE) techniques have excellent potential in such circumstances, but have been underutilized in public health due to lack of awareness and confidence in applying its methods. The goal of this research is to make model-based SAE accessible to a broad readership using clear, example-based learning. Specifically, we applied the principles of multilevel, unit-level SAE to describe the geographic distribution of HPV vaccine coverage among females aged 11-26 in Texas.^ Multilevel (3 level: individual, county, public health region) random-intercept logit models of HPV vaccination (receipt of ≥ 1 dose Gardasil® ) were fit to data from the 2008 Behavioral Risk Factor Surveillance System (outcome and level 1 covariates) and a number of secondary sources (group-level covariates). Sampling weights were scaled (level 1) or constructed (levels 2 & 3), and incorporated at every level. Using the regression coefficients (and standard errors) from the final models, I simulated 10,000 datasets for each regression coefficient from the normal distribution and applied them to the logit model to estimate HPV vaccine coverage in each county and respective demographic subgroup. For simplicity, I only provide coverage estimates (and 95% confidence intervals) for counties.^ County-level coverage among females aged 11-17 varied from 6.8-29.0%. For females aged 18-26, coverage varied from 1.9%-23.8%. Aggregated to the state level, these values translate to indirect state estimates of 15.5% and 11.4%, respectively; both of which fall within the confidence intervals for the direct estimates of HPV vaccine coverage in Texas (Females 11-17: 17.7%, 95% CI: 13.6, 21.9; Females 18-26: 12.0%, 95% CI: 6.2, 17.7).^ Small area estimation has great potential for informing policy, program development and evaluation, and the provision of health services. Harnessing the flexibility of multilevel, unit-level SAE to estimate HPV vaccine coverage among females aged 11-26 in Texas counties, I have provided (1) practical guidance on how to conceptualize and conduct modelbased SAE, (2) a robust framework that can be applied to other health outcomes or geographic levels of aggregation, and (3) HPV vaccine coverage data that may inform the development of health education programs, the provision of health services, the planning of additional research studies, and the creation of local health policies.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the association between determinants of access to healthcare and preventable hospitalizations, based on Davidson et al.'s framework for evaluating the effects of individual and community determinants on access to healthcare. The study population consisted of the low income, non-elderly, hospitalized adults residing in Harris County, Texas in 2004. The objectives of this study were to examine the proportion of the variance in preventable hospitalizations at the ZIP-code level, to analyze the association between the proximity to the nearest safety net clinic and preventable hospitalizations, to examine how the safety net capacity relates to preventable hospitalizations, to compare the relative strength of the associations of health insurance and the proximity to the nearest safety net clinic with preventable hospitalizations, and to estimate and compare the costs of preventable hospitalizations in Harris County with the average cost in the literature. The data were collected from Texas Health Care Information Collection (2004), Census 2000, and Project Safety Net (2004). A total of 61,841 eligible individuals were included in the final data analysis. A random-intercept multi-level model was constructed with two different levels of data: the individual level and the ZIP-code level. The results of this study suggest that ZIP-code characteristics explain about two percent of the variance in preventable hospitalizations and safety net capacity was marginally significantly associated with preventable hospitalizations (p= 0.062). Proximity to the nearest safety net clinic was not related to preventable hospitalizations; however, health insurance was significantly associated with a decreased risk of preventable hospitalization. The average direct cost was $6,466 per preventable hospitalization, which is significantly different from reports in the literature. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. An enlarged tracheoesophageal puncture (TEP) results in aspiration around the voice prosthesis (VP) and may lead to pneumonia. The aims of this research were: (1) to conduct a systematic review and meta-analysis on enlarged TEP; (2) to analyze preoperative, perioperative, and postoperative risk factors for enlarged TEP; and (3) to evaluate control of leakage around the VP using conservative treatments and adverse events in patients with enlarged TEP.^ Methods. A systematic review was conducted (1978-2008). A summary risk estimate was calculated using a random-effects meta-analysis model. A retrospective cohort study was completed. Patients who underwent total laryngectomy and TEP at The University of Texas M. D. Anderson Cancer Center (MDACC) were included. Multiple logistic regression methods were used to assess risk factors for enlargement. Descriptive and bivariate statistics were calculated to evaluate outcomes and adverse events. Results: Twenty-seven manuscripts were included in the systematic review. The summary risk estimate of enlarged TEP/leakage around the VP was 7.2% (95% CI: 4.8%-9.6%). Temporary VP removal and TEP-site injections were the most commonly reported treatments. Neither prosthetic diameter (p=0.076) nor timing of TEP (p=0.297) significantly increased risk of enlargement per stratified analyses of published outcomes. The cumulative incidence of enlarged TEP was 18.6% (36/194, 95% CI: 13.0%-24.1%) in the MDACC cohort. Enlarged TEP occurred exclusively in irradiated patients. Adjusting for length of follow-up and timing of TEP, advanced nodal disease (ORadjusted: 4.3, 95% CI: 1.0-19.1), stricture (ORadjusted : 3.2, 95% CI: 1.2-8.6), and locoregional recurrence/distant metastasis after laryngectomy (ORadjusted: 6.2, 95% CI: 2.3-16.4) increased risk of enlarged TEP. At last follow-up, conservative methods controlled leakage around the VP in 81% (29/36) of patients. Unresolved leakage was associated with recurrent cancer (p=0.081) and TEP-site irregularity (p=0.003). Relative to those without enlargement, enlarged TEP patients had significantly higher risk of pneumonia (RR: 3.4, 95% CI: 1.9-6.2).^ Conclusions. These data establish that enlarged TEP poses serious health risks, and provide insight into medical and oncologic factors that may contribute to development of this complication. In addition, this research supports the use of conservative treatments to address leakage after enlarged TEP in lieu of complete TEP closure.^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and standard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points. Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo deficient subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients who had started HAART (Highly Active Anti-Retroviral Treatment) under previous aggressive DHHS guidelines (1997) underwent a life-long continuous HAART that was associated with many short term as well as long term complications. Many interventions attempted to reduce those complications including intermittent treatment also called pulse therapy. Many studies were done to study the determinants of rate of fall in CD4 count after interruption as this data would help guide treatment interruptions. The data set used here was a part of a cohort study taking place at the Johns Hopkins AIDS service since January 1984, in which the data were collected both prospectively and retrospectively. The patients in this data set consisted of 47 patients receiving via pulse therapy with the aim of reducing the long-term complications. ^ The aim of this project was to study the impact of virologic and immunologic factors on the rate of CD4 loss after treatment interruption. The exposure variables under investigation included CD4 cell count and viral load at treatment initiation. The rates of change of CD4 cell count after treatment interruption was estimated from observed data using advanced longitudinal data analysis methods (i.e., linear mixed model). Using random effects accounted for repeated measures of CD4 per person after treatment interruption. The regression coefficient estimates from the model was then used to produce subject specific rates of CD4 change accounting for group trends in change. The exposure variables of interest were age, race, and gender, CD4 cell counts and HIV RNA levels at HAART initiation. ^ The rate of fall of CD4 count did not depend on CD4 cell count or viral load at initiation of treatment. Thus these factors may not be used to determine who can have a chance of successful treatment interruption. CD4 and viral load were again studied by t-tests and ANOVA test after grouping based on medians and quartiles to see any difference in means of rate of CD4 fall after interruption. There was no significant difference between the groups suggesting that there was no association between rate of fall of CD4 after treatment interruption and above mentioned exposure variables. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of analyzing data with updated measurements in the time-dependent proportional hazards model arises frequently in practice. One available option is to reduce the number of intervals (or updated measurements) to be included in the Cox regression model. We empirically investigated the bias of the estimator of the time-dependent covariate while varying the effect of failure rate, sample size, true values of the parameters and the number of intervals. We also evaluated how often a time-dependent covariate needs to be collected and assessed the effect of sample size and failure rate on the power of testing a time-dependent effect.^ A time-dependent proportional hazards model with two binary covariates was considered. The time axis was partitioned into k intervals. The baseline hazard was assumed to be 1 so that the failure times were exponentially distributed in the ith interval. A type II censoring model was adopted to characterize the failure rate. The factors of interest were sample size (500, 1000), type II censoring with failure rates of 0.05, 0.10, and 0.20, and three values for each of the non-time-dependent and time-dependent covariates (1/4,1/2,3/4).^ The mean of the bias of the estimator of the coefficient of the time-dependent covariate decreased as sample size and number of intervals increased whereas the mean of the bias increased as failure rate and true values of the covariates increased. The mean of the bias of the estimator of the coefficient was smallest when all of the updated measurements were used in the model compared with two models that used selected measurements of the time-dependent covariate. For the model that included all the measurements, the coverage rates of the estimator of the coefficient of the time-dependent covariate was in most cases 90% or more except when the failure rate was high (0.20). The power associated with testing a time-dependent effect was highest when all of the measurements of the time-dependent covariate were used. An example from the Systolic Hypertension in the Elderly Program Cooperative Research Group is presented. ^