5 resultados para Radiosensitivity
em DigitalCommons@The Texas Medical Center
Resumo:
Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^
Resumo:
The object of this work was to study the possibility that microtubule assembly might be involved in radiation sensitivity effect. The proliferating hair follicle was used to study the effects of cooling c-AMP, colcemid, and vincristine on the survival of the hair after irradiation. It was found that after 2 hours of cooling at the rewarming stage of the hair follicles, the sensitivity to irradiation increased and colcemid reversed this effect. c-AMP decreased radiosensitivity and together with colcemid, sensitivity decreased considerably. It is proposed that the assembly of microtubules is sensitive to irradiation.^ Total tubulin in L-P59 tumor measured immediately after irradiation was found to decrease in a dose specific manner after single doses ranging from 500 to 2000 rad. It is proposed that the change in Ca('2+) concentration after irradiation might cause this effect. Irradiation inhibited the increase in specific viscosity of 3x and 1x tubulin irradiated at the time of assembly. A small reduction in specific viscosity was found when polymerized microtubules were irradiated.^ From these experiments it is proposed that the assembly of microtubules is affected by irradiation. It may be the result of an increase in CA('2+) concentration in the tissue after irradiation or an inactivation of the initiation centers. The effects of irradiation on unassembled tubulin or assembled microtubules is negligible. ^
Resumo:
Radiotherapy has been a method of choice in cancer treatment for a number of years. Mathematical modeling is an important tool in studying the survival behavior of any cell as well as its radiosensitivity. One particular cell under investigation is the normal T-cell, the radiosensitivity of which may be indicative to the patient's tolerance to radiation doses.^ The model derived is a compound branching process with a random initial population of T-cells that is assumed to have compound distribution. T-cells in any generation are assumed to double or die at random lengths of time. This population is assumed to undergo a random number of generations within a period of time. The model is then used to obtain an estimate for the survival probability of T-cells for the data under investigation. This estimate is derived iteratively by applying the likelihood principle. Further assessment of the validity of the model is performed by simulating a number of subjects under this model.^ This study shows that there is a great deal of variation in T-cells survival from one individual to another. These variations can be observed under normal conditions as well as under radiotherapy. The findings are in agreement with a recent study and show that genetic diversity plays a role in determining the survival of T-cells. ^
Resumo:
Although frequently cured of Hodgkin lymphoma, adolescents and young adults can develop radiation induced second cancers. These patients could potentially benefit from scanned ion radiotherapy yet likely would require motion mitigation strategies. In theory, four-dimensional (4D) optimization of ion beam fields for individual motion states of respiration can enable superior sparing of healthy tissue near moving targets, compared to other motion mitigation strategies. Furthermore, carbon-ion therapy can sometimes provide greater relative biological effectiveness (RBE) for cell sterilization in a target but nearly equivalent RBE in tissue upstream of the target, compared to proton therapy. Thus, we expected that for some patients with Hodgkin lymphoma, carbon-ion therapy would reduce the predicted risk of second cancer incidence in the breast compared with proton therapy. The purpose of this work was to determine whether 4D-optimized carbon-ion therapy would significantly reduce the predicted risk of radiation induced second cancers in the breast for female Hodgkin lymphoma patients while preserving tumor control compared with proton therapy. To achieve our goals, we first investigated whether 4D-optimized carbon beam tracking could reduce dose to volumes outside a moving target compared with 3D-optimized carbon beam tracking while preserving target dose coverage. To understand the reliability of scanned carbon beam tracking, we studied the robustness of dose distributions in thoracic targets to uncertainties in patient motion. Finally, we investigated whether using carbon-ion therapy instead of proton therapy would significantly reduce the predicted risk of second cancer in the breast for a sample of Hodgkin lymphoma patients. We found that 4D-optimized ion beam tracking therapy can reduce the maximum dose to critical structures near a moving target by as much as 53%, compared to 3D-optimized ion beam tracking therapy. We validated these findings experimentally using a scanned carbon ion synchrotron and a motion phantom. We found scanned carbon beam tracking to be sensitive to a number of motion uncertainties, most notably phase delays in tracking, systematic spatial errors, and interfractional motion changes. Our findings indicate that a lower risk of second cancer in the breast might be expected for some Hodgkin lymphoma patients using carbon-ion therapy instead of proton therapy. For our reference scenario, we found the ratio of risk to be 0.77 ± 0.35 for radiogenic breast cancer after carbon-ion therapy versus proton therapy. Our findings were dependent on the RBE values for tumor induction and the radiosensitivity of breast tissue, as well as the physical dose distribution.