14 resultados para Radionuclide Tomography

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of lung tumors during respiration makes the accurate delivery of radiation therapy to the thorax difficult because it increases the uncertainty of target position. The adoption of four-dimensional computed tomography (4D-CT) has allowed us to determine how a tumor moves with respiration for each individual patient. Using information acquired during a 4D-CT scan, we can define the target, visualize motion, and calculate dose during the planning phase of the radiotherapy process. One image data set that can be created from the 4D-CT acquisition is the maximum-intensity projection (MIP). The MIP can be used as a starting point to define the volume that encompasses the motion envelope of the moving gross target volume (GTV). Because of the close relationship that exists between the MIP and the final target volume, we investigated four MIP data sets created with different methodologies (3 using various 4D-CT sorting implementations, and one using all available cine CT images) to compare target delineation. It has been observed that changing the 4D-CT sorting method will lead to the selection of a different collection of images; however, the clinical implications of changing the constituent images on the resultant MIP data set are not clear. There has not been a comprehensive study that compares target delineation based on different 4D-CT sorting methodologies in a patient population. We selected a collection of patients who had previously undergone thoracic 4D-CT scans at our institution, and who had lung tumors that moved at least 1 cm. We then generated the four MIP data sets and automatically contoured the target volumes. In doing so, we identified cases in which the MIP generated from a 4D-CT sorting process under-represented the motion envelope of the target volume by more than 10% than when measured on the MIP generated from all of the cine CT images. The 4D-CT methods suffered from duplicate image selection and might not choose maximum extent images. Based on our results, we suggest utilization of a MIP generated from the full cine CT data set to ensure a representative inclusive tumor extent, and to avoid geometric miss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of approximately 1,280 flagellar motors, a approximately 3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the human immunodeficiency virus (HIV) and some of its components have been difficult to study in three-dimensions (3D) primarily because of their intrinsic structural variability. Recent advances in cryoelectron tomography (cryo-ET) have provided a new approach for determining the 3D structures of the intact virus, the HIV capsid, and the envelope glycoproteins located on the viral surface. A number of cryo-ET procedures related to specimen preservation, data collection, and image processing are presented in this chapter. The techniques described herein are well suited for determining the ultrastructure of bacterial and viral pathogens and their associated molecular machines in situ at nanometer resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV) is a recently discovered DNA tumor virus that belongs to the gamma-herpesvirus subfamily. Though numerous studies on KSHV and other herpesviruses, in general, have revealed much about their multilayered organization and capsid structure, the herpesvirus capsid assembly and maturation pathway remains poorly understood. Structural variability or irregularity of the capsid internal scaffolding core and the lack of adequate tools to study such structures have presented major hurdles to earlier investigations employing more traditional cryo-electron microscopy (cryoEM) single particle reconstruction. In this study, we used cryo-electron tomography (cryoET) to obtain 3D reconstructions of individual KSHV capsids, allowing direct visualization of the capsid internal structures and systematic comparison of the scaffolding cores for the first time. We show that B-capsids are not a structurally homogenous group; rather, they represent an ensemble of "B-capsid-like" particles whose inner scaffolding is highly variable, possibly representing different intermediates existing during the KSHV capsid assembly and maturation. This information, taken together with previous observations, has allowed us to propose a detailed pathway of herpesvirus capsid assembly and maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gammaherpesviruses, including the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are causative agents of lymphomas and other malignancies. The structural characterization of these viruses has been limited due to difficulties in obtaining adequate amount of virion particles. Here we report the first three-dimensional structural characterization of a whole gammaherpesvirus virion by an emerging integrated approach of cryo-electron tomography combined with single-particle cryo-electron microscopy, using murine gammaherpesvirus-68 (MHV-68) as a model system. We found that the MHV-68 virion consists of distinctive envelope and tegument compartments, and a highly conserved nucleocapsid. Two layers of tegument are identified: an inner tegument layer tethered to the underlying capsid and an outer, flexible tegument layer conforming to the overlying, pleomorphic envelope, consistent with the sequential viral tegumentation process inside host cells. Surprisingly, comparison of the MHV-68 virion and capsid reconstructions shows that the interactions between the capsid and inner tegument proteins are completely different from those observed in alpha and betaherpesviruses. These observations support the notion that the inner layer tegument across different subfamilies of herpesviruses has evolved significantly to confer specific characteristics related to viral-host interactions, in contrast to a highly conserved capsid for genome encapsidation and protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic and biochemical studies have suggested the existence of a bacteriophage-like, DNA-packaging/ejecting portal complex in herpesviruses capsids, but its arrangement remained unknown. Here, we report the first visualization of a unique vertex in the Kaposi's sarcoma-associated herpesvirus (KSHV) capsid by cryoelectron tomography, thus providing direct structural evidence for the existence of a portal complex in a gammaherpesvirus. This putative KSHV portal is an internally localized, umbilicated structure and lacks all of the external machineries characteristic of portals in DNA bacteriophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung damage is a common side effect of chemotherapeutic drugs such as bleomycin. This study used a bleomycin mouse model which simulates the lung damage observed in humans. Noninvasive, in vivo cone-beam computed tomography (CBCT) was used to visualize and quantify fibrotic and inflammatory damage over the entire lung volume of mice. Bleomycin was used to induce pulmonary damage in vivo and the results from two CBCT systems, a micro-CT and flat panel CT (fpCT), were compared to histologic measurements, the standard method of murine lung damage quantification. Twenty C57BL/6 mice were given either 3 U/kg of bleomycin or saline intratracheally. The mice were scanned at baseline, before the administration of bleomycin, and then 10, 14, and 21 days afterward. At each time point, a subset of mice was sacrificed for histologic analysis. The resulting CT images were used to assess lung volume. Percent lung damage (PLD) was calculated for each mouse on both the fpCT (PLDfpcT) and the micro-CT (PLDμCT). Histologic PLD (PLDH) was calculated for each histologic section at each time point (day 10, n = 4; day 14, n = 4; day 21, n = 5; control group, n = 5). A linear regression was applied to the PLDfpCT vs. PLDH, PLDμCT vs. PLDH and PLDfpCT vs. PLDμCT distributions. This study did not demonstrate strong correlations between PLDCT and PLDH. The coefficient of determination, R, was 0.68 for PLDμCT vs. PLDH and 0.75 for the PLD fpCT vs. PLDH. The experimental issues identified from this study were: (1) inconsistent inflation of the lungs from scan to scan, (2) variable distribution of damage (one histologic section not representative of overall lung damage), (3) control mice not scanned with each group of bleomycin mice, (4) two CT systems caused long anesthesia time for the mice, and (5) respiratory gating did not hold the volume of lung constant throughout the scan. Addressing these issues might allow for further improvement of the correlation between PLDCT and PLDH. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary artery disease (CAD) is the most common cause of morbidity and mortality in the United States. While Coronary Angiography (CA) is the gold standard test to investigate coronary artery disease, Prospective gated-64 Slice Computed Tomography (Prosp-64CT) is a new non-invasive technology that uses the 64Slice computed tomography (64CT) with electrocardiographic gating to investigate coronary artery disease. The aim of the current study was to investigate the role of Body Mass Index (BMI) as a factor affecting occurrence of CA after a Prosp-64CT, as well as the quality of the Prosp-64CT. Demographic and clinical characteristics of the study population were described. A secondary analysis of data on patients who underwent a Prosp-64CT for evaluation of coronary artery disease was performed. Seventy seven patients who underwent Prosp-64CT for evaluation for coronary artery disease were included. Fifteen patients were excluded because they had missing data regarding BMI, quality of the Prosp-64CT or CA. Thus, a total of 62 patients were included in the final analysis. The mean age was 56.2 years. The mean BMI was 31.3 kg/m 2. Eight (13%) patients underwent a CA within one month of Prosp-64CT. Eight (13%) patients had a poor quality Prosp-64CT. There was significant association of higher BMI as a factor for occurrence of CA post Prosp-64CT (P<0.05). There was a trend, but no statistical significance was observed for the association of being obese and occurrence of CA (P=0.06). BMI, as well as obesity, were not found to be significantly associated with poor quality of Prosp-64CT (P=0.19 and P=0.76, respectively). In conclusion, BMI was significantly associated with occurrence of CA within one month of Prosp-64CT. Thus, in patients with a higher BMI, diagnostic investigation with both tests could be avoided; rather, only a CA could be performed. However, the relationship of BMI to quality of Prosp-64CT needs to be further investigated since the sample size of the current study was small.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To evaluate trends in the utilization of head, abdominal, thoracic and other body regions CTs in the management of victims of MVC at a level I trauma center from 1996 to 2006.^ Method. From the trauma registry, I identified patients involved in MVC's in a level I trauma center and categorized them into three age groups of 13-18, 19-55 and ≥56. I used International Classification of Disease (ICD-9-CM) codes to find the type and number of CTs examinations performed for each patient. I plotted the mean number of CTs per patient against year of admission to find the crude estimate of change in utilization pattern for each type of CT. I used logistic regression to assess whether repetitive CTs (≥ 2) for head, abdomen, thorax and other body regions were associated with age group and year of admission for MVC patients. I adjusted the estimates for gender, ethnicity, insurance status, mechanism and severity of injury, intensive care unit admission status, patient disposition (dead or alive) and year of admission.^ Results. Utilization of head, abdominal, thoracic and other body regions CTs significantly increased over 11-year period. Utilization of head CT was greatest in the 13-18 age group, and increased from 0.58 CT/patient in 1996 to 1.37 CT/patient in 2006. Abdominal CTs were more common in the ≥56+ age group, and increased from 0.33 CT/patient in 1996 to 0.72 CT/patient in 2006. Utilization of thoracic CTs was higher in the 56+ age group, and increased from 0.01 CT/patient in 1996 to 0.42 CT/patient in 2006. Utilization of other CTs did not change materially during the study period for adolescents, adults or older adults. In the multivariable analysis, after adjustment for potential confounders, repetitive head CTs significantly increased in the 13-18 age group (95% CI: 1.29-1.87, p=<0.001) relative to the 19-55 age group. Repetitive thoracic CT use was lower in adolescents (95% CI: 0.22-0.70, p=<0.001) relative to the 19-55 age group.^ Conclusion. There has been a substantial increase in the utilization of head, abdominal, thoracic and other CTs in the management of MVC patients. Future studies need to identify if increased utilization of CTs have resulted in better health outcome for these patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an $\sp{131}$I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of $-$16.3% to 4.4%. Volume quantitation errors ranged from $-$4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3-D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues. ^