5 resultados para REPRESENTATIONS OF PARTIALLY ORDERED SETS

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manuscript 1: “Conceptual Analysis: Externalizing Nursing Knowledge” We use concept analysis to establish that the report tool nurses prepare, carry, reference, amend, and use as a temporary data repository are examples of cognitive artifacts. This tool, integrally woven throughout the work and practice of nurses, is important to cognition and clinical decision-making. Establishing the tool as a cognitive artifact will support new dimensions of study. Such studies can characterize how this report tool supports cognition, internal representation of knowledge and skills, and external representation of knowledge of the nurse. Manuscript 2: “Research Methods: Exploring Cognitive Work” The purpose of this paper is to describe a complex, cross-sectional, multi-method approach to study of personal cognitive artifacts in the clinical environment. The complex data arrays present in these cognitive artifacts warrant the use of multiple methods of data collection. Use of a less robust research design may result in an incomplete understanding of the meaning, value, content, and relationships between personal cognitive artifacts in the clinical environment and the cognitive work of the user. Manuscript 3: “Making the Cognitive Work of Registered Nurses Visible” Purpose: Knowledge representations and structures are created and used by registered nurses to guide patient care. Understanding is limited regarding how these knowledge representations, or cognitive artifacts, contribute to working memory, prioritization, organization, cognition, and decision-making. The purpose of this study was to identify and characterize the role a specific cognitive artifact knowledge representation and structure as it contributed to the cognitive work of the registered nurse. Methods: Data collection was completed, using qualitative research methods, by shadowing and interviewing 25 registered nurses. Data analysis employed triangulation and iterative analytic processes. Results: Nurse cognitive artifacts support recall, data evaluation, decision-making, organization, and prioritization. These cognitive artifacts demonstrated spatial, longitudinal, chronologic, visual, and personal cues to support the cognitive work of nurses. Conclusions: Nurse cognitive artifacts are an important adjunct to the cognitive work of nurses, and directly support patient care. Nurses need to be able to configure their cognitive artifact in ways that are meaningful and support their internal knowledge representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental data sets of pollutant concentrations in air, water, and soil frequently include unquantified sample values reported only as being below the analytical method detection limit. These values, referred to as censored values, should be considered in the estimation of distribution parameters as each represents some value of pollutant concentration between zero and the detection limit. Most of the currently accepted methods for estimating the population parameters of environmental data sets containing censored values rely upon the assumption of an underlying normal (or transformed normal) distribution. This assumption can result in unacceptable levels of error in parameter estimation due to the unbounded left tail of the normal distribution. With the beta distribution, which is bounded by the same range of a distribution of concentrations, $\rm\lbrack0\le x\le1\rbrack,$ parameter estimation errors resulting from improper distribution bounds are avoided. This work developed a method that uses the beta distribution to estimate population parameters from censored environmental data sets and evaluated its performance in comparison to currently accepted methods that rely upon an underlying normal (or transformed normal) distribution. Data sets were generated assuming typical values encountered in environmental pollutant evaluation for mean, standard deviation, and number of variates. For each set of model values, data sets were generated assuming that the data was distributed either normally, lognormally, or according to a beta distribution. For varying levels of censoring, two established methods of parameter estimation, regression on normal ordered statistics, and regression on lognormal ordered statistics, were used to estimate the known mean and standard deviation of each data set. The method developed for this study, employing a beta distribution assumption, was also used to estimate parameters and the relative accuracy of all three methods were compared. For data sets of all three distribution types, and for censoring levels up to 50%, the performance of the new method equaled, if not exceeded, the performance of the two established methods. Because of its robustness in parameter estimation regardless of distribution type or censoring level, the method employing the beta distribution should be considered for full development in estimating parameters for censored environmental data sets. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To characterize PubMed usage over a typical day and compare it to previous studies of user behavior on Web search engines. DESIGN: We performed a lexical and semantic analysis of 2,689,166 queries issued on PubMed over 24 consecutive hours on a typical day. MEASUREMENTS: We measured the number of queries, number of distinct users, queries per user, terms per query, common terms, Boolean operator use, common phrases, result set size, MeSH categories, used semantic measurements to group queries into sessions, and studied the addition and removal of terms from consecutive queries to gauge search strategies. RESULTS: The size of the result sets from a sample of queries showed a bimodal distribution, with peaks at approximately 3 and 100 results, suggesting that a large group of queries was tightly focused and another was broad. Like Web search engine sessions, most PubMed sessions consisted of a single query. However, PubMed queries contained more terms. CONCLUSION: PubMed's usage profile should be considered when educating users, building user interfaces, and developing future biomedical information retrieval systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistic regression is one of the most important tools in the analysis of epidemiological and clinical data. Such data often contain missing values for one or more variables. Common practice is to eliminate all individuals for whom any information is missing. This deletion approach does not make efficient use of available information and often introduces bias.^ Two methods were developed to estimate logistic regression coefficients for mixed dichotomous and continuous covariates including partially observed binary covariates. The data were assumed missing at random (MAR). One method (PD) used predictive distribution as weight to calculate the average of the logistic regressions performing on all possible values of missing observations, and the second method (RS) used a variant of resampling technique. Additional seven methods were compared with these two approaches in a simulation study. They are: (1) Analysis based on only the complete cases, (2) Substituting the mean of the observed values for the missing value, (3) An imputation technique based on the proportions of observed data, (4) Regressing the partially observed covariates on the remaining continuous covariates, (5) Regressing the partially observed covariates on the remaining continuous covariates conditional on response variable, (6) Regressing the partially observed covariates on the remaining continuous covariates and response variable, and (7) EM algorithm. Both proposed methods showed smaller standard errors (s.e.) for the coefficient involving the partially observed covariate and for the other coefficients as well. However, both methods, especially PD, are computationally demanding; thus for analysis of large data sets with partially observed covariates, further refinement of these approaches is needed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problem: Medical and veterinary students memorize facts but then have difficulty applying those facts in clinical problem solving. Cognitive engineering research suggests that the inability of medical and veterinary students to infer concepts from facts may be due in part to specific features of how information is represented and organized in educational materials. First, physical separation of pieces of information may increase the cognitive load on the student. Second, information that is necessary but not explicitly stated may also contribute to the student’s cognitive load. Finally, the types of representations – textual or graphical – may also support or hinder the student’s learning process. This may explain why students have difficulty applying biomedical facts in clinical problem solving. Purpose: To test the hypothesis that three specific aspects of expository text – the patial distance between the facts needed to infer a rule, the explicitness of information, and the format of representation – affected the ability of students to solve clinical problems. Setting: The study was conducted in the parasitology laboratory of a college of veterinary medicine in Texas. Sample: The study subjects were a convenience sample consisting of 132 second-year veterinary students who matriculated in 2007. The age of this class upon admission ranged from 20-52, and the gender makeup of this class consisted of approximately 75% females and 25% males. Results: No statistically significant difference in student ability to solve clinical problems was found when relevant facts were placed in proximity, nor when an explicit rule was stated. Further, no statistically significant difference in student ability to solve clinical problems was found when students were given different representations of material, including tables and concept maps. Findings: The findings from this study indicate that the three properties investigated – proximity, explicitness, and representation – had no statistically significant effect on student learning as it relates to clinical problem-solving ability. However, ad hoc observations as well as findings from other researchers suggest that the subjects were probably using rote learning techniques such as memorization, and therefore were not attempting to infer relationships from the factual material in the interventions, unless they were specifically prompted to look for patterns. A serendipitous finding unrelated to the study hypothesis was that those subjects who correctly answered questions regarding functional (non-morphologic) properties, such as mode of transmission and intermediate host, at the family taxonomic level were significantly more likely to correctly answer clinical case scenarios than were subjects who did not correctly answer questions regarding functional properties. These findings suggest a strong relationship (p < .001) between well-organized knowledge of taxonomic functional properties and clinical problem solving ability. Recommendations: Further study should be undertaken investigating the relationship between knowledge of functional taxonomic properties and clinical problem solving ability. In addition, the effect of prompting students to look for patterns in instructional material, followed by the effect of factors that affect cognitive load such as proximity, explicitness, and representation, should be explored.