4 resultados para REACH cost function

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of Markov processes is very useful to health-care problems. The objective of this study is to provide a structured methodology of forecasting cost based upon combining a stochastic model of utilization (Markov Chain) and deterministic cost function. The perspective of the cost in this study is the reimbursement for the services rendered. The data to be used is the OneCare database of claim records of their enrollees over a two-year period of January 1, 1996–December 31, 1997. The model combines a Markov Chain that describes the utilization pattern and its variability where the use of resources by risk groups (age, gender, and diagnosis) will be considered in the process and a cost function determined from a fixed schedule based on real costs or charges for those in the OneCare claims database. The cost function is a secondary application to the model. Goodness-of-fit will be used checked for the model against the traditional method of cost forecasting. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this research is to examine the relative profitability of the firm within the nursing facility industry in Texas. An examination is made of the variables expected to affect profitability and of importance to the design and implementation of regulatory policy. To facilitate this inquiry, specific questions addressed are: (1) Do differences in ownership form affect profitability (defined as operating income before fixed costs)? (2) What impact does regional location have on profitability? (3) Do patient case-mix and access to care by Medicaid patients differ between proprietary and non-profit firms and facilities located in urban versus rural regions, and what association exists between these variables and profitability? (4) Are economies of scale present in the nursing home industry? (5) Do nursing facilities operate in a competitive output market characterized by the inability of a single firm to exhibit influence over market price?^ Prior studies have principally employed a cost function to assess efficiency differences between classifications of nursing facilities. The inherent weakness in this approach is that it only considers technical efficiency. Not both technical and price efficiency which are the two components of overall economic efficiency. One firm is more technically efficient compared to another if it is able to produce a given quantity of output at the least possible costs. Price efficiency means that scarce resources are being directed towards their most valued use. Assuming similar prices in both input and output markets, differences in overall economic efficiency between firm classes are assessed through profitability, hence a profit function.^ Using the framework of the profit function, data from 1990 Medicaid Costs Reports for Texas, and the analytic technique of Ordinary Least Squares Regression, the findings of the study indicated (1) similar profitability between nursing facilities organized as for-profit versus non-profit and located in urban versus rural regions, (2) an inverse association between both payor-mix and patient case-mix with profitability, (3) strong evidence for the presence of scale economies, and (4) existence of a competitive market structure. The paper concludes with implications regarding reimbursement methodology and construction moratorium policies in Texas. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In population studies, most current methods focus on identifying one outcome-related SNP at a time by testing for differences of genotype frequencies between disease and healthy groups or among different population groups. However, testing a great number of SNPs simultaneously has a problem of multiple testing and will give false-positive results. Although, this problem can be effectively dealt with through several approaches such as Bonferroni correction, permutation testing and false discovery rates, patterns of the joint effects by several genes, each with weak effect, might not be able to be determined. With the availability of high-throughput genotyping technology, searching for multiple scattered SNPs over the whole genome and modeling their joint effect on the target variable has become possible. Exhaustive search of all SNP subsets is computationally infeasible for millions of SNPs in a genome-wide study. Several effective feature selection methods combined with classification functions have been proposed to search for an optimal SNP subset among big data sets where the number of feature SNPs far exceeds the number of observations. ^ In this study, we take two steps to achieve the goal. First we selected 1000 SNPs through an effective filter method and then we performed a feature selection wrapped around a classifier to identify an optimal SNP subset for predicting disease. And also we developed a novel classification method-sequential information bottleneck method wrapped inside different search algorithms to identify an optimal subset of SNPs for classifying the outcome variable. This new method was compared with the classical linear discriminant analysis in terms of classification performance. Finally, we performed chi-square test to look at the relationship between each SNP and disease from another point of view. ^ In general, our results show that filtering features using harmononic mean of sensitivity and specificity(HMSS) through linear discriminant analysis (LDA) is better than using LDA training accuracy or mutual information in our study. Our results also demonstrate that exhaustive search of a small subset with one SNP, two SNPs or 3 SNP subset based on best 100 composite 2-SNPs can find an optimal subset and further inclusion of more SNPs through heuristic algorithm doesn't always increase the performance of SNP subsets. Although sequential forward floating selection can be applied to prevent from the nesting effect of forward selection, it does not always out-perform the latter due to overfitting from observing more complex subset states. ^ Our results also indicate that HMSS as a criterion to evaluate the classification ability of a function can be used in imbalanced data without modifying the original dataset as against classification accuracy. Our four studies suggest that Sequential Information Bottleneck(sIB), a new unsupervised technique, can be adopted to predict the outcome and its ability to detect the target status is superior to the traditional LDA in the study. ^ From our results we can see that the best test probability-HMSS for predicting CVD, stroke,CAD and psoriasis through sIB is 0.59406, 0.641815, 0.645315 and 0.678658, respectively. In terms of group prediction accuracy, the highest test accuracy of sIB for diagnosing a normal status among controls can reach 0.708999, 0.863216, 0.639918 and 0.850275 respectively in the four studies if the test accuracy among cases is required to be not less than 0.4. On the other hand, the highest test accuracy of sIB for diagnosing a disease among cases can reach 0.748644, 0.789916, 0.705701 and 0.749436 respectively in the four studies if the test accuracy among controls is required to be at least 0.4. ^ A further genome-wide association study through Chi square test shows that there are no significant SNPs detected at the cut-off level 9.09451E-08 in the Framingham heart study of CVD. Study results in WTCCC can only detect two significant SNPs that are associated with CAD. In the genome-wide study of psoriasis most of top 20 SNP markers with impressive classification accuracy are also significantly associated with the disease through chi-square test at the cut-off value 1.11E-07. ^ Although our classification methods can achieve high accuracy in the study, complete descriptions of those classification results(95% confidence interval or statistical test of differences) require more cost-effective methods or efficient computing system, both of which can't be accomplished currently in our genome-wide study. We should also note that the purpose of this study is to identify subsets of SNPs with high prediction ability and those SNPs with good discriminant power are not necessary to be causal markers for the disease.^