4 resultados para RADIATIVE TRANSITION-PROBABILITIES

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical methods are developed which assess survival data for two attributes; (1) prolongation of life, (2) quality of life. Health state transition probabilities correspond to prolongation of life and are modeled as a discrete-time semi-Markov process. Imbedded within the sojourn time of a particular health state are the quality of life transitions. They reflect events which differentiate perceptions of pain and suffering over a fixed time period. Quality of life transition probabilities are derived from the assumptions of a simple Markov process. These probabilities depend on the health state currently occupied and the next health state to which a transition is made. Utilizing the two forms of attributes the model has the capability to estimate the distribution of expected quality adjusted life years (in addition to the distribution of expected survival times). The expected quality of life can also be estimated within the health state sojourn time making more flexible the assessment of utility preferences. The methods are demonstrated on a subset of follow-up data from the Beta Blocker Heart Attack Trial (BHAT). This model contains the structure necessary to make inferences when assessing a general survival problem with a two dimensional outcome. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A general model for the illness-death stochastic process with covariates has been developed for the analysis of survival data. This model incorporates important baseline and time-dependent covariates to make proper adjustment for the transition probabilities and survival probabilities. The follow-up period is subdivided into small intervals and a constant hazard is assumed for each interval. An approximation formula is derived to estimate the transition parameters when the exact transition time is unknown.^ The method developed is illustrated by using data from a study on the prevention of the recurrence of a myocardial infarction and subsequent mortality, the Beta-Blocker Heart Attack Trial (BHAT). This method provides an analytical approach which simultaneously includes provision for both fatal and nonfatal events in the model. According to this analysis, the effectiveness of the treatment can be compared between the Placebo and Propranolol treatment groups with respect to fatal and nonfatal events. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^