4 resultados para Quasi-likelihood estimator

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do siblings of centenarians tend to have longer life spans? To answer this question, life spans of 184 siblings for 42 centenarians have been evaluated. Two important questions have been addressed in analyzing the sibling data. First, a standard needs to be established, to which the life spans of 184 siblings are compared. In this report, an external reference population is constructed from the U.S. life tables. Its estimated mortality rates are treated as baseline hazards from which the relative mortality of the siblings are estimated. Second, the standard survival models which assume independent observations are invalid when correlation within family exists, underestimating the true variance. Methods that allow correlations are illustrated by three different methods. First, the cumulative relative excess mortality between siblings and their comparison group is calculated and used as an effective graphic tool, along with the Product Limit estimator of the survival function. The variance estimator of the cumulative relative excess mortality is adjusted for the potential within family correlation using Taylor linearization approach. Second, approaches that adjust for the inflated variance are examined. They are adjusted one-sample log-rank test using design effect originally proposed by Rao and Scott in the correlated binomial or Poisson distribution setting and the robust variance estimator derived from the log-likelihood function of a multiplicative model. Nether of these two approaches provide correlation estimate within families, but the comparison with the comparison with the standard remains valid under dependence. Last, using the frailty model concept, the multiplicative model, where the baseline hazards are known, is extended by adding a random frailty term that is based on the positive stable or the gamma distribution. Comparisons between the two frailty distributions are performed by simulation. Based on the results from various approaches, it is concluded that the siblings of centenarians had significant lower mortality rates as compared to their cohorts. The frailty models also indicate significant correlations between the life spans of the siblings. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many public health agencies and researchers are interested in comparing hospital outcomes, for example, morbidity, mortality, and hospitalization across areas and hospitals. However, since there is variation of rates in clinical trials among hospitals because of several biases, we are interested in controlling for the bias and assessing real differences in clinical practices. In this study, we compared the variations between hospitals in rates of severe Intraventricular Haemorrhage (IVH) infant using Frequentist statistical approach vs. Bayesian hierarchical model through simulation study. The template data set for simulation study was included the number of severe IVH infants of 24 intensive care units in Australian and New Zealand Neonatal Network from 1995 to 1997 in severe IVH rate in preterm babies. We evaluated the rates of severe IVH for 24 hospitals with two hierarchical models in Bayesian approach comparing their performances with the shrunken rates in Frequentist method. Gamma-Poisson (BGP) and Beta-Binomial (BBB) were introduced into Bayesian model and the shrunken estimator of Gamma-Poisson (FGP) hierarchical model using maximum likelihood method were calculated as Frequentist approach. To simulate data, the total number of infants in each hospital was kept and we analyzed the simulated data for both Bayesian and Frequentist models with two true parameters for severe IVH rate. One was the observed rate and the other was the expected severe IVH rate by adjusting for five predictors variables for the template data. The bias in the rate of severe IVH infant estimated by both models showed that Bayesian models gave less variable estimates than Frequentist model. We also discussed and compared the results from three models to examine the variation in rate of severe IVH by 20th centile rates and avoidable number of severe IVH cases. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In geographical epidemiology, maps of disease rates and disease risk provide a spatial perspective for researching disease etiology. For rare diseases or when the population base is small, the rate and risk estimates may be unstable. Empirical Bayesian (EB) methods have been used to spatially smooth the estimates by permitting an area estimate to "borrow strength" from its neighbors. Such EB methods include the use of a Gamma model, of a James-Stein estimator, and of a conditional autoregressive (CAR) process. A fully Bayesian analysis of the CAR process is proposed. One advantage of this fully Bayesian analysis is that it can be implemented simply by using repeated sampling from the posterior densities. Use of a Markov chain Monte Carlo technique such as Gibbs sampler was not necessary. Direct resampling from the posterior densities provides exact small sample inferences instead of the approximate asymptotic analyses of maximum likelihood methods (Clayton & Kaldor, 1987). Further, the proposed CAR model provides for covariates to be included in the model. A simulation demonstrates the effect of sample size on the fully Bayesian analysis of the CAR process. The methods are applied to lip cancer data from Scotland, and the results are compared. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each year, hospitalized patients experience 1.5 million preventable injuries from medication errors and hospitals incur an additional $3.5 billion in cost (Aspden, Wolcott, Bootman, & Cronenwatt; (2007). It is believed that error reporting is one way to learn about factors contributing to medication errors. And yet, an estimated 50% of medication errors go unreported. This period of medication error pre-reporting, with few exceptions, is underexplored. The literature focuses on error prevention and management, but lacks a description of the period of introspection and inner struggle over whether to report an error and resulting likelihood to report. Reporting makes a nurse vulnerable to reprimand, legal liability, and even threat to licensure. For some nurses this state may invoke a disparity between a person‘s belief about him or herself as a healer and the undeniable fact of the error.^ This study explored the medication error reporting experience. Its purpose was to inform nurses, educators, organizational leaders, and policy-makers about the medication error pre-reporting period, and to contribute to a framework for further investigation. From a better understanding of factors that contribute to or detract from the likelihood of an individual to report an error, interventions can be identified to help the nurse come to a psychologically healthy resolution and help increase reporting of error in order to learn from error and reduce the possibility of future similar error.^ The research question was: "What factors contribute to a nurse's likelihood to report an error?" The specific aims of the study were to: (1) describe participant nurses' perceptions of medication error reporting; (2) describe participant explanations of the emotional, cognitive, and physical reactions to making a medication error; (3) identify pre-reporting conditions that make it less likely for a nurse to report a medication error; and (4) identify pre-reporting conditions that make it more likely for a nurse to report a medication error.^ A qualitative research study was conducted to explore the medication error experience and in particular the pre-reporting period from the perspective of the nurse. A total of 54 registered nurses from a large private free-standing not-for-profit children's hospital in the southwestern United States participated in group interviews. The results describe the experience of the nurse as well as the physical, emotional, and cognitive responses to the realization of the commission of a medication error. The results also reveal factors that make it more and less likely to report a medication error.^ It is clear from this study that upon realization that he or she has made a medication error, a nurse's foremost concern is for the safety of the patient. Fear was also described by each group of nurses. The nurses described a fear of several things including physician reaction, manager reaction, peer reaction, as well as family reaction and possible lack of trust as a result. Another universal response was the description of a struggle with guilt, shame, imperfection, blaming oneself, and questioning one's competence.^