5 resultados para Quantitative systems pharmacology

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β2 adrenergic receptor (β2AR) regulates smooth muscle relaxation in the vasculature and airways. Long- and Short-acting β-agonists (LABAs/SABAs) are widely used in treatment of chronic obstructive pulmonary disorder (COPD) and asthma. Despite their widespread clinical use we do not understand well the dominant β2AR regulatory pathways that are stimulated during therapy and bring about tachyphylaxis, which is the loss of drug effects. Thus, an understanding of how the β2AR responds to various β-agonists is crucial to their rational use. Towards that end we have developed deterministic models that explore the mechanism of drug- induced β2AR regulation. These mathematical models can be classified into three classes; (i) Six quantitative models of SABA-induced G protein coupled receptor kinase (GRK)-mediated β2AR regulation; (ii) Three phenomenological models of salmeterol (a LABA)-induced GRK-mediated β2AR regulation; and (iii) One semi-quantitative, unified model of SABA-induced GRK-, protein kinase A (PKA)-, and phosphodiesterase (PDE)-mediated regulation of β2AR signalling. The various models were constrained with all or some of the following experimental data; (i) GRK-mediated β2AR phosphorylation in response to various LABAs/SABAs; (ii) dephosphorylation of the GRK site on the β2AR; (iii) β2AR internalisation; (iv) β2AR recycling; (v) β2AR desensitisation; (vi) β2AR resensitisation; (vii) PKA-mediated β2AR phosphorylation in response to a SABA; and (viii) LABA/SABA induced cAMP profile ± PDE inhibitors. The models of GRK-mediated β2AR regulation show that plasma membrane dephosphorylation and recycling of the phosphorylated β2AR are required to reconcile with the measured dephosphorylation kinetics. We further used a consensus model to predict the consequences of rapid pulsatile agonist stimulation and found that although resensitisation was rapid, the β2AR system retained the memory of prior stimuli and desensitised much more rapidly and strongly in response to subsequent stimuli. This could explain tachyphylaxis of SABAs over repeated use in rescue therapy of asthma patients. The LABA models show that the long action of salmeterol can be explained due to decreased stability of the arrestin/β2AR/salmeterol complex. This could explain long action of β-agonists used in maintenance therapy of asthma patients. Our consensus model of PKA/PDE/GRK-mediated β2AR regulation is being used to identify the dominant β2AR desensitisation pathways under different therapeutic regimens in human airway cells. In summary our models represent a significant advance towards understanding agonist-specific β2AR regulation that will aid in a more rational use of the β2AR agonists in the treatment of asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been multiple reports which indicate that variations in $\beta$AR expression affect the V$\sb{\rm max}$ observed for the agonist-dependent activation of adenylylcyclase. This observation has been ignored by most researchers when V$\sb{\rm max}$ values obtained for wild type and mutant receptors are compared. Such an imprecise analysis may lead to erroneous conclusions concerning the ability of a receptor to activate adenylylcyclase. Equations were derived from the Cassel-Selinger model of GTPase activity and Tolkovsky and Levitzki's Collision Coupling model which predict that the EC$\sb{50}$ and V$\sb{\rm max}$ for the activation of adenylylcyclase are a function of receptor number. Experimental results for L cell clones in which either hamster or human $\beta$AR were transfected at varying levels showed that EC$\sb{50}$ decreases and V$\sb{\rm max}$ increases as receptor number increases. Comparison of these results with simulations obtained from the equations describing EC$\sb{50}$ and V$\sb{\rm max}$ showed a close correlation. This documents that the kinetic parameters of adenylylcyclase activation change with the level of receptor expression and relates this phenomenon to a theoretical framework concerning the mechanisms involved in $\beta$AR signal transduction.^ One of the terms used in the equations which expressed the EC$\sb{50}$ and V$\sb{\rm max}$ as a function of receptor number is coupling efficiency, defined as $\rm k\sb1/k\sb{-1}$. Calculation of $\rm k\sb1/k\sb{-1}$ can be accomplished for wild type receptors with the easily measured experimental values of agonist K$\sb{\rm d}$, EC$\sb{50}$ and receptor number. This was demonstrated for hamster $\beta$AR which yielded a coupling efficiency of 0.15 $\pm$ 0.003 and human $\beta$AR which yielded a coupling efficiency of 0.90 $\pm$ 0.031. $\rm k\sb1/k\sb{-1}$ replaces the traditional qualitative evaluation of the ability to activate adenylylcyclase, which utilizes V$\sb{\rm max}$ without correction for variation in receptor number, with a quantitative definition that more accurately describes the ability of $\beta$AR to couple to G$\sb{\rm s}$.^ The equations which express the EC$\sb{50}$ and V$\sb{\rm max}$ for adenylylcyclase activation as a function of receptor number and coupling efficiency were tested to determine whether they could accurately simulate the changes seen in these parameters during desensitization. Data from original desensitization experiments and data from the literature (24,25,52,54,83) were compared to simulated changes in EC$\sb{50}$ and V$\sb{\rm max}$. In a variety of systems the predictions of the equations were consistent with the changes observed in EC$\sb{50}$ and V$\sb{\rm max}$. In addition reductions in the calculated value of $\rm k\sb1/k\sb{-1}$ was shown to correlate well with $\beta$AR phosphorylation and to be minimally affected by sequestration and down-regulation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Food and Drug Administration (FDA) is responsible for risk assessment and risk management in the post-market surveillance of the U.S. medical device industry. One of the FDA regulatory mechanisms, the Medical Device Reporting System (MDR) is an adverse event reporting system intended to provide the FDA with advance warning of device problems. It includes voluntary reporting for individuals, and mandatory reporting for device manufacturers. ^ In a study of alleged breast implant safety problems, this research examines the organizational processes by which the FDA gathers data on adverse events and uses adverse event reporting systems to assess and manage risk. The research reviews the literature on problem recognition, risk perception, and organizational learning to understand the influence highly publicized events may have on adverse event reporting. Understanding the influence of an environmental factor, such as publicity, on adverse event reporting can provide insight into the question of whether the FDA's adverse event reporting system operates as an early warning system for medical device problems. ^ The research focuses on two main questions. The first question addresses the relationship between publicity and the voluntary and mandatory reporting of adverse events. The second question examines whether government agencies make use of these adverse event reports. ^ Using quantitative and qualitative methods, a longitudinal study was conducted of the number and content of adverse event reports regarding breast implants filed with the FDA's medical device reporting system during 1985–1991. To assess variation in publicity over time, the print media were analyzed to identify articles related to breast implant failures. ^ The exploratory findings suggest that an increase in media activity is related to an increase in voluntary reporting, especially following periods of intense media coverage of the FDA. However, a similar relationship was not found between media activity and manufacturers' mandatory adverse event reporting. A review of government committee and agency reports on the FDA published during 1976–1996 produced little evidence to suggest that publicity or MDR information contributed to problem recognition, agenda setting, or the formulation of policy recommendations. ^ The research findings suggest that the reporting of breast implant problems to FDA may reflect the perceptions and concerns of the reporting groups, a barometer of the volume and content of media attention. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rexinoids are synthetic agonists for the retinoid X receptors (RXRs), a member of the nuclear receptor family of ligand-activated transcription factors. Rexinoids have been shown to lower serum glucose and insulin levels in animal models of type 2 diabetes. However the mechanisms that are responsible for the insulin-sensitizing action of rexinoids are largely unknown. Skeletal muscle accounts for the majority of insulin-regulated whole-body glucose disposal and impaired insulin action in muscle is an important contributor to the pathophysiology of type 2 diabetes. Glucose transport is a rate-limiting step in glucose utilization. The goal of these studies is to examine the mechanisms of the anti-diabetic activity of rexinoids in skeletal muscle of diabetic db/db mice. The results we have obtained showed that treatment of db/db mice with rexinoids for two weeks resulted in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Insulin stimulates glucose transport in muscle via the regulation of both the insulin receptor substrate-1 (IRS-1)/Akt pathway and the Cbl-associated protein (CAP)/Cbl pathway. Rexinoids increased the insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation without effects on the activity of the CAP/Cbl pathway. The effects of rexinoids on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Serine 307 phosphorylation as well as qualitative and quantitative alterations in the fatty acyl-CoAs present within the muscle cells. In addition, rexinoids increased the expression of uncoupling protein 3 (UCP3) and activation of AMPK in diabetic muscle. This effect may also enhance the IRS-1/Akt signaling. We believe that it is the concerted activation of the IRS-1/Akt and AMPK signaling systems, a pharmacological mechanism that as far as we know, is unique to rexinoids, that results in the anti-diabetic effects of these drugs. Our results also suggest that the glucose-lowering mechanism of rexinoids is distinct from that of the thiazolidinediones (TZDs), peroxisome proliferator-activated receptor γ (PPARγ) agonists with well-characterized anti-diabetic activity. Rexinoids appear to represent a novel class of insulin sensitizers, with potential applications for the treatment of type 2 diabetes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been hypothesized that results from the short term bioassays will ultimately provide information that will be useful for human health hazard assessment. Although toxicologic test systems have become increasingly refined, to date, no investigator has been able to provide qualitative or quantitative methods which would support the use of short term tests in this capacity.^ Historically, the validity of the short term tests have been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used in the setting of priorities. In contrast, the goal of this research was to address the problem of evaluating the utility of the short term tests for hazard assessment using an alternative method of investigation.^ Chemical carcinogens were selected from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC). Tumorigenicity and mutagenicity data on fifty-two chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The relative potency framework allows for the standardization of data "relative" to a reference compound. To avoid any bias associated with the choice of the reference compound, fourteen different compounds were used.^ The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). The results were statistically significant (p $<$.05) for data standardized to thirteen of the fourteen reference compounds. Although this was a preliminary investigation, it offers evidence that the short term test systems may be of utility in ranking the hazards represented by chemicals which may be human carcinogens. ^