2 resultados para Quadrants and varieties
em DigitalCommons@The Texas Medical Center
Resumo:
The proportional distribution of independent malignant tumors in the contralateral breast following treatment for breast cancer was investigated to assess the influence of scattered radiation as a cause of these tumors. In a population of 172 patients the proportion of contralateral tumors in each quadrant and the center (the nipple-areolar complex) was compared with the expected, or natural, distribution found in the general population, in the absence of radiation. The observed/expected ratio for contralateral tumors was 1.43 for the upper-inner quadrant; 0.97, lower-inner quadrant; 1.51, center; 0.76, upper-outer quadrant; and 0.64, lower-outer quadrant. In each quadrant, except the lower-inner, the observed/expected ratio differed from 1.00 with statistical significance at the 5% level (one-tail). The same analysis, stratified by age and menopausal status, showed a similar shift of tumors, with more than expected in the inner quadrants and center and less than expected in the outer quadrants, although the results did not show statistical significance at the 5% level for all strata. For each patient the mean absorbed radiation dose for each quadrant and center of the breast was estimated, based on measurements in a tissue-equivalent phantom. Among patients the doses ranged from 0.5 to 8 Gy; within individuals, doses to the inner quadrants typically were a factor of three times higher than doses to the outer quadrants. The results suggest that radiation may be a risk factor for contralateral breast tumors and warrants further investigation. ^
Resumo:
Hodgkin's disease (HD) is a cancer of the lymphatic system. Survivors of HD face varieties of consequent adverse effects, in which secondary primary tumors (SPT) is one of the most serious consequences. This dissertation is aimed to model time-to-SPT in the presence of death and HD relapses during follow-up.^ The model is designed to handle a mixture phenomenon of SPT and the influence of death. Relapses of HD are adjusted as a covariate. Proportional hazards framework is used to define SPT intensity function, which includes an exponential term to estimate explanatory variables. Death as a competing risk is considered according to different scenarios, depending on which terminal event comes first. Newton-Raphson method is used to estimate the parameter estimates in the end.^ The proposed method is applied to a real data set containing a group of HD patients. Several risk factors for the development of SPT are identified and the findings are noteworthy in the development of healthcare guidelines that may lead to the early detection or prevention of SPT.^