9 resultados para Pulmonary Vascular Function

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Health-related quality of life (HRQOL) is an important measure of the effects of chronic liver disease in affected patients that helps guide interventions to improve well-being. However, the relationship between HRQOL and survival in liver transplant candidates remains unclear. We examined whether the Physical Component Summary (PCS) and Mental Component Summary (MCS) scores from the Short Form 36 (SF-36) Health Survey were associated with survival in liver transplant candidates. We administered the SF-36 questionnaire (version 2.0) to patients in the Pulmonary Vascular Complications of Liver Disease study, a multicenter prospective cohort of patients evaluated for liver transplantation in 7 academic centers in the United States between 2003 and 2006. Cox proportional hazards models were used with death as the primary outcome and adjustment for liver transplantation as a time-varying covariate. The mean age of the 252 participants was 54 +/- 10 years, 64% were male, and 94% were white. During the 422 person years of follow-up, 147 patients (58%) were listed, 75 patients (30%) underwent transplantation, 49 patients (19%) died, and 3 patients were lost to follow-up. Lower baseline PCS scores were associated with an increased mortality rate despite adjustments for age, gender, Model for End-Stage Liver Disease score, and liver transplantation (P for the trend = 0.0001). The MCS score was not associated with mortality (P for the trend = 0.53). In conclusion, PCS significantly predicts survival in liver transplant candidates, and interventions directed toward improving the physical status may be helpful in improving outcomes in liver transplant candidates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DCE-MRI is an important technique in the study of small animal cancer models because its sensitivity to vascular changes opens the possibility of quantitative assessment of early therapeutic response. However, extraction of physiologically descriptive parameters from DCE-MRI data relies upon measurement of the vascular input function (VIF), which represents the contrast agent concentration time course in the blood plasma. This is difficult in small animal models due to artifacts associated with partial volume, inflow enhancement, and the limited temporal resolution achievable with MR imaging. In this work, the development of a suite of techniques for high temporal resolution, artifact resistant measurement of the VIF in mice is described. One obstacle in VIF measurement is inflow enhancement, which decreases the sensitivity of the MR signal to the presence of contrast agent. Because the traditional techniques used to suppress inflow enhancement degrade the achievable spatiotemporal resolution of the pulse sequence, improvements can be achieved by reducing the time required for the suppression. Thus, a novel RF pulse which provides spatial presaturation contemporaneously with the RF excitation was implemented and evaluated. This maximizes the achievable temporal resolution by removing the additional RF and gradient pulses typically required for suppression of inflow enhancement. A second challenge is achieving the temporal resolution required for accurate characterization of the VIF, which exceeds what can be achieved with conventional imaging techniques while maintaining adequate spatial resolution and tumor coverage. Thus, an anatomically constrained reconstruction strategy was developed that allows for sampling of the VIF at extremely high acceleration factors, permitting capture of the initial pass of the contrast agent in mice. Simulation, phantom, and in vivo validation of all components were performed. Finally, the two components were used to perform VIF measurement in the murine heart. An in vivo study of the VIF reproducibility was performed, and an improvement in the measured injection-to-injection variation was observed. This will lead to improvements in the reliability of quantitative DCE-MRI measurements and increase their sensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective measurements of physical fitness and pulmonary function are related individually to long-term survival, both in healthy people and in those who are ill. These factors are furthermore known to be related to one another physiologically in people with pulmonary disease, because advanced pulmonary disease causes ventilatory limitation to exercise. Healthy people do not have ventilatory limitation to exercise, but rather have ventilatory reserve. The relationship between pulmonary function and exercise performance in healthy people is minimal. Exercise performance has been shown to modify the effect of pulmonary function on mortality in people with chronic obstructive pulmonary disease, but the relationship between these factors in healthy people has not been studied and is not known. The purpose of this study is to quantify the joint effects of pulmonary function and exercise performance as these bear on mortality in a cohort of healthy adults. This investigation is an historical cohort study over 20 years of follow-up of 29,624 adults who had complete preventive medicine, spirometry and treadmill stress examinations at the Cooper Clinic in Dallas, Texas.^ In 20 years of follow-up, there were 738 evaluable deaths. Forced expiratory volume in one second (FEV$\sb1$) percent of predicted, treadmill time in minutes percent of predicted, age, gender, body mass index, baseline smoking status, serum glucose and serum total cholesterol were all significant, independent predictors of mortality risk. There were no frank interactions, although age had an important increasing effect on the risk associated with smoking when other covariates were controlled for in a proportional-hazards model. There was no confounding effect of exercise performance on pulmonary function. In agreement with the pertinent literature on independent effects, each unit increase in FEV$\sb1$ percent predicted was associated with about eight tenths of a percent reduction in adjusted mortality rate. The concept of physiologic reserve is useful in interpretation of the findings. Since pulmonary function does not limit exercise tolerance in healthy adults, it is reasonable to expect that exercise tolerance would not modify the effect of pulmonary function on mortality. Epidemiologic techniques are useful for elucidating physiological correlates of mortality risk. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Research investigating symptom management in patients with chronic obstructive pulmonary disease (COPD) largely has been undertaken assuming the homeostatic construct, without regard to potential roles of circadian rhythms. Temporal relations among dyspnea, fatigue, peak expiratory flow rate (PEFR) and objective measures of activity/rest have not been reported in COPD. ^ Objectives. The specific aims of this study were to (1) explore the 24-hour patterns of dyspnea, fatigue, and PEFR in subjects with COPD; (2) examine the relations among dyspnea, fatigue, and PEFR in COPD; and (3) examine the relations among objective measures of activity/rest and dyspnea, fatigue, and PEFR in COPD. ^ Methods. The repeated-measures design involved 10 subjects with COPD who self-assessed dyspnea and fatigue by 100 mm visual analog scales, and PEFR by peak flow meter in their home 5 times a day for 8 days. Activity/rest was measured by wrist actigraphy. Single and population mean cosinor analyses and correlations were computed for dyspnea, fatigue, and PEFR; correlations were done among these variables and activity/rest. ^ Results. Circadian rhythms were documented by single cosinor analysis in 40% of the subjects for dyspnea, 60% for fatigue, and 60% for PEFR. The population cosinor analysis of PEFR yielded a significant rhythm (p < .05). The 8-day 24-hour means of dyspnea and fatigue was moderately correlated (r = .48, p < .01). Dyspnea and PEFR, and fatigue and PEFR, were weakly correlated in a negative way (r = −.11, p < .05 and r = −.15, p < .01 respectively). Weak to moderate correlations (r = .12–.34, p < .05) were demonstrated between PEFR and mean activity level measured up to 4 hours before PEFR measurement. ^ Conclusions. The findings suggest that (1) the dyspnea and fatigue experienced by COPD patients are moderately related, (2) there is a weak to modest positive relation between PEFR and activity levels, and (3) temporal variation in lung function may not affect the dyspnea and fatigue experienced by patients with COPD. Further research, examining the relations among dyspnea, fatigue, PEFR, and activity/rest is needed. Replication of this study is suggested with a larger sample size. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenosine has been implicated in chronic lung diseases such as asthma and COPD. Most physiological actions of adenosine are mediated through G-protein coupled adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B, and A 3. However, the specific roles of the various adenosine receptors in processes central to asthma and COPD are not well understood in part due to the lack of adequate animal models that examine the effect of adenosine on the development of lung disease. In this study we have investigated the expression and function of the A3 adenosine receptor in pulmonary eosinophilia and mucus production/secretion in adenosine deaminase (ADA)-deficient mice in which adenosine levels are elevated. ADA-deficient mice develop features of asthma and COPD, including lung eosinophilia and mucus hyperplasia in association with elevated lung adenosine levels. The A3 receptor was found to be expressed in eosinophils and mucus producing cells in the airways of ADA-deficient. Disruption of A3 receptor signaling in ADA-deficient mice by genetic removal of the receptor or treatment with MRS 1523, a selective A3 adenosine receptor antagonist, prevented airway eosinophilia and mucus production. Although eosinophils were decreased in the airways of ADA-deficient mice with disrupted A3 receptor signaling, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3 receptor is needed for the migration of eosinophils into the airways. Further examination of the role of the A3 receptor in mucus biology demonstrated that the A3 receptor is neither required nor is overexpression of the receptor in clara cells sufficient for mucus production in naive mice. Transgenic overexpression of the A3 receptor did elucidate a role for the A3 receptor in the secretion of mucus into the airways of ovalbumin challenged mice. These findings identify an important role for the A3 adenosine receptor in regulating lung eosinophilia and mucus secretion in inflammatory lung diseases. Therefore, the A3 adenosine receptor may represent a novel therapeutic target for the treatment and prevention of asthma. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 12,000 new cases of spinal cord injury (SCI) are added each year to the estimated 259,000 Americans living with SCI. The majority of these patients return to society, their lives forever changed by permanent loss of sensory and motor function. While there are no FDA approved drugs for the treatment of SCI or a universally accepted standard therapy, the current though controversial treatment includes the delivery of high dosages of the corticosteroid methyliprednisolone sodium succinate, surgical interventions to stabilize the spinal column, and physical rehabilitation. It is therefore critically important to fully understand the pathology of injury and determine novel courses and rationally-based therapies for SCI. ^ Vascular endothelial growth factor (VEGF) is an attractive target for treating central nervous system (CNS) injury and disease because it has been shown to influence angiogenesis and neuroprotection. Preliminary studies have indicated that increased vasculature may be associated with functional recovery; therefore exogenous delivery of a pro-angiogenic growth factor such as VEGF may improve neurobehavioral outcome. In addition, VEGF may provide protection from secondary injury and result in increased survival and axonal sprouting. ^ In these studies, SCI rats received acute intraspinal injections of VEGF, the antibody to VEGF, or vehicle control. The effect of these various agents was investigated using longitudinalmulti-modal magnetic resonance imaging (MRI), neuro- and sensory behavioral assays, and end point immunohistochemistry. We found that rats that received VEGF after SCI had increased tissue sparing and improved white matter integrity at the earlier time points as shown by advanced magnetic resonance imaging (MRI) techniques. However, these favorable effects of VEGF were not maintained, suggesting that additional treatments with VEGF at multiple time points may be more beneficial, Histological examinations revealed that VEGF treatment may result in increased oligodendrogenesis and therefore may eventually lead to remyelination and improved functional outcome. ^ On the neurobehavioral studies, treatments with VEGF and Anti-VEGF did not significantly affect performance on tests of open-field locomotion, grid walk, inclined plane, or rearing. However, VEGF treatment resulted in significantly increased incidence of chronic neuropathic pain. This phenomenon could possibly be attributed to the fact that VEGF treatment may promote axonal sprouting and also results in tissue sparing, thereby providing a substrate for the growth of new axons. New connections made by these sprouting axons may involve components of pathways involved in the transmission of pain and therefore result in increased pain in those animals. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thoracic aortic aneurysms and dissections (TAAD) are the primary disease affecting the thoracic ascending aorta, with an incidence rate of 10.4/100,000. Although about 20% of patients carry a mutation in a single gene that causes their disease, the remaining 80% of patients may also have genetic factors that increase their risk for developing TAAD. Many of the genes that predispose to TAAD encode proteins involved in smooth muscle cell (SMC) contraction and the disease-causing mutations are predicted to disrupt contractile function. SMCs are the predominant cell type in the ascending aortic wall. Mutations in MYH11, encoding the smooth muscle specific myosin heavy chain, are a rare cause of inherited TAAD. However, rare but recurrent non-synonymous variants in MYH11 are present in the general population but do not cause inherited TAAD. The goal of this study was to assess the potential role of these rare variants in vascular diseases. Two distinct variants were selected: the most commonly seen rare variant, MYH11 R247C, and a duplication of the chromosomal region spanning the MYH11 locus at 16p13.1. Genetic analyses indicated that both of these variants were significantly enriched in patients with TAAD compared with controls. A knock-in mouse model of the Myh11 R247C rare variant was generated, and these mice survive and reproduce normally. They have no structural abnormalities of the aorta or signs of aortic disease, but do have decreased aortic contractility. Myh11R247C/R247C mice also have increased proliferative response to vascular injury in vivo and increased proliferation of SMCs in vitro. Myh11R247C/R247C SMCs have decreased contractile gene and protein expression and are dedifferentiated. In fibroblasts, myosin force generation is required for maturation of focal adhesions, and enhancers of RhoA activity replace enhancers of Rac1 activity as maturation occurs. Consistent with these previous findings, focal adhesions are smaller in Myh11R247C/R247C SMCs, and there is decreased RhoA activation. A RhoA activator (CN03) rescues the dedifferentiated phenotype of Myh11R247C/R247C SMCs. Myh11R247C/R247C mice were bred with an existing murine model of aneurysm formation, the Acta2-/- mouse. Over time, mice carrying the R247C allele in conjunction with heterozygous or homozygous loss of Acta2 had significantly increased aortic diameter, and a more rapid accumulation of pathologic markers. These results suggest that the Myh11 R247C rare variant acts as a modifier gene increasing the risk for and severity of TAAD in mice. In patients with 16p13.1 duplications, aortic MYH11 expression is increased, but there is no corresponding increase in smooth muscle myosin heavy chain protein. Using SMCs that overexpress Myh11, we identified alterations in SMC phenotype leading to excessive protein turnover. All contractile proteins, not just myosin, are affected, and the proteins are turned over by autophagic degradation. Surprisingly, these cells are also more contractile compared with wild-type SMCs. The results described in this dissertation firmly establish that rare variants in MYH11 significantly affect the phenotype of SMCs. Further, the data suggests that these rare variants do increase the risk of TAAD via pathways involving altered SMC phenotype and contraction. Therefore, this study validates that these rare genetic variants alter vascular SMCs and provides model systems to explore the contribution of rare variants to disease.