5 resultados para Public buildings -- Energy consumption
em DigitalCommons@The Texas Medical Center
Resumo:
The purpose of this prospective observational field study was to present a model for measuring energy expenditure among nurses and to determine if there was a difference between the energy expenditure of nurses providing direct care to adult patients on general medical-surgical units in two major metropolitan hospitals and a recommended energy expenditure of 3.0 kcal/minute over 8 hours. One-third of the predicted cycle ergometer VO2max for the study population was used to calculate the recommended energy expenditure.^ Two methods were used to measure energy expenditure among participants during an 8 hour day shift. First, the Energy Expenditure Prediction Program (EEPP) developed by the University of Michigan Center for Ergonomics was used to calculate energy expenditure using activity recordings from observation (OEE; n = 39). The second method used ambulatory electrocardiography and the heart rate-oxygen consumption relationship (HREE; n = 20) to measure energy expenditure. It was concluded that energy expenditure among nurses can be estimated using the EEPP. Using classification systems from previous research, work load among the study population was categorized as "moderate" but was significantly less than (p = 0.021) 3.0 kcal/minute over 8 hours or 1/3 of the predicted VO2max.^ In addition, the relationships between OEE, body-part discomfort (BPCDS) and mental work load (MWI) were evaluated. The relationships between OEE/BPCDS and OEE/MWI were not significant (p = 0.062 and 0.091, respectively). Among the study population, body-part discomfort significantly increased for upper arms, mid-back, lower-back, legs and feet by mid-shift and by the end of the shift, the increase was also significant for neck and thighs.^ The study also provided documentation of a comprehensive list of nursing activities. Among the most important findings were the facts that the study population spent 23% of the workday in a bent posture, walked an average of 3.14 miles, and spent two-thirds of the shift doing activities other than direct patient care, such as paperwork and communicating with other departments. A discussion is provided regarding the ergonomic implications of these findings. ^
Resumo:
This research is a secondary analysis of the Qué Sabrosa Vida population-based cross-sectional study of two predominately Mexican American communities located along the Texas-Mexico border in 2000. There were two aims for this research. The first was to determine the relationship between knowledge of exercise and water recommendations, and exercise behavior and water consumption. The second was to determine the relationship between exercise behavior and percentage of energy consumption from beverages. Chi-square analysis revealed the majority of both populations had adequate knowledge about water and exercise recommendations, although significant percentages of the populations (>40%) did not consume water or exercise in adequate amounts. Knowledge was found to be a component of both behaviors, as it was more prevalent in the adults who exercised and consumed water in adequate amounts. Analysis of variance revealed no significant difference between overall beverage calorie percentage and exercise level (all p-values > 0.05); both regions and genders reported ∼18% of total caloric intake from beverages. There was no disproportionate influence of beverage calories on total caloric intake, after controlling for water consumption and independent of exercise behavior. These findings suggest that overall caloric intake, from both foods and beverages, may be the most influential factor to the energy imbalance contributing to the obesity crisis in these Hispanic border populations. ^
Resumo:
It is estimated that more than half the U.S. adult population is overweight or obese as classified by a body mass index of 25.0–29.9 or ≥30 kg/m 2, respectively. Since the current treatment approaches for long-term maintenance of weight loss are lacking, the National Institutes of Health state that an effective approach may be to focus on weight gain prevention. There is a limited body of literature describing how adults maintain a stable weight as they age. It is hypothesized that weight stability is the result of a balance between energy consumption and energy expenditure as influenced by diet, lifestyle, behavior, genetics and environment. The purpose of this research was to examine the dietary intake and behaviors, lifestyle habits, and risk factors for weight change that predict weight stability in a cohort of 2101 men and 389 women aged 20 to 8 7 years in the Aerobic Center Longitudinal Study regardless of body weight at baseline. At baseline, participants completed a maximal exercise treadmill test to determine cardiorespiratory fitness, a medical history questionnaire, which included self-reported measures of weight, dietary behaviors, lifestyle habits, and risk factors for weight change, a three-day diet record, and a mail-back version of the medical history questionnaire in 1990 or 1995. All analyses were performed separately for men and women. Results from multivariate regression analyses indicated that the strongest predictor of follow-up weight for men and women was previous weight, accounting for 87.0% and 81.9% of the variance, respectively. Age, length of follow-up and eating habits were also significant predictors of follow-up weight in men, though these variables only explained 3% of the variance. For women, length of follow-up and currently being on a diet were significantly associated with follow-up weight but these variables explained only an additional 2% of the variance. Understanding the factors that influence weight change has tremendous public health importance for developing effective methods to prevent weight gain. Since current weight was the strongest predictor of previous weight, preventing initial weight gain by maintaining a stable weight may be the most effective method to combat the increasing prevalence of overweight and obesity. ^
Resumo:
The prevalence of obesity has continued to rise over the last several decades in the United States lending to overall increases in risk for chronic diseases including many types of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor types. Previous data has demonstrated differential signaling through Akt and mTOR via the IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In an effort to better understand the importance of mTORC1 in the context of both positive and negative energy balance during epithelial carcinogenesis, we have employed the use of specific pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) to target mTORC1 or various components of this pathway during skin tumor promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition via rapamycin, metformin or combination treatments greatly inhibited skin tumor development in normal, overweight and obese mice. Furthermore, mechanisms by which these chemopreventive agents may be exerting their anti-tumor effects were explored. In addition, the effect of these compounds on the epidermal proliferative response was analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent manner. Both compounds also blocked or attenuated TPA-induced signaling through epidermal mTORC1 as well as several downstream targets. In addition, inhibition of this pathway by metformin appeared to be, at least in part, dependent on AMPK activation in the skin. Overall, the data indicate that pharmacological strategies targeting this pathway offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They suggest that mTORC1 contributes significantly to the process of skin tumor promotion, specifically during dietary energy balance effects. Exploiting the mechanistic information underlying dietary energy balance responsive pathways will help translate decades of research into effective strategies for prevention of epithelial carcinogenesis.