6 resultados para Proximal tubule

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expression of the Na$\sp+$/glucose cotransporter (SGLT1), a differentiated function of the pig kidney epithelial cell line LLC-PK$\sb1$ derived from proximal tubule, was further investigated. The differentiation inducer hexamethylene bisacetamide (HMBA) and IBMX, an inhibitor of cAMP phosphodiesterase, each stimulated a significant increase in Na$\sp+$/glucose cotransport activity, levels of the 75 kD cotransporter subunit and steady-state levels of the SGLT1 message. The action of HMBA is associated with involvement of polyamines and protein kinase C, and is synergistic with cAMP. We provide evidence that cAMP-elevating agents increase Na$\sp+$/glucose cotransporter expression, at least in part, via a post-transcriptional mechanism. Two molecular species of SGLT1 mRNA (3.9 kb and 2.2 kb) are transcribed from the same gene in LLC-PK$\sb1$ cells and differ only in the length of the 3$\sp\prime$ untranslated region (3$\sp\prime$ UTR). cAMP elevation differentially stabilized the 3.9 kb SGLT1 transcript from degradation but not the 22 kb species. UV-cross-linking and label transfer experiments indicated that cyclic AMP elevation was associated with formation of a 48 kD protein complex with a specific domain within the 3$\sp\prime$ UTR of SGLT1 mRNA. The binding was competitively inhibited by poly (U) and other U-rich RNA species such as c-fos ARE, and modulated by a protein kinase A-mediated phosphorylation/dephosphorylation mechanism. The binding site was mapped to a 120-nucleotide 3$\sp\prime$ UTR sequence which contains a uridine-rich region (URE). Our study provides the first demonstration that renal SGLT1 is post-transcriptionally regulated by a phosphorylation/dephosphorylation mechanism, and provides a deeper insight into gene regulation of this physiologically important cotransporter. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian kidney maintains homeostasis of the extracellular environment and eliminates toxic substances from the body, in part via secretion by the organic cation transporters (OCT). Some nucleosides are also secreted by the kidney. Previous work indicated that the deoxyadenosine analog, 2′ -deoxytubercidin (dTub), is secreted by mouse kidney through the OCTs. This study examines the role of OCTs in the renal secretion of dTub and other nucleoside analogs. ^ Using the Xenopus laevis oocyte expression system, the basolateral type rat organic cation transporter rOCT1 was shown to transport dTub and other nucleosides. The positive charged form of dTub (dTub +) appears to be the substrate for rOCT1. Tetraethylammonium (TEA) and dTub competitively inhibit the other's uptake by rOCT1 in a manner consistent with their interaction at a common site. Although 67% homologous with rOCT1, rOCT2 does not mediate the uptake of these nucleosides. Kinetic studies demonstrated the difference in substrate specificity between rOCT1 and rOCT2 to be largely due to a poor affinity of rOCT2 for dTub+. This difference in affinity is located within transmembrane domains 2–7 as determined by chimeric constructs. ^ OCT1 knockout mice were used to evaluate the role of OCT1 in the renal secretion of dTub. No significant difference in tissue distribution and urinary excretion of dTub was observed between the knockout and wild-type mice, indicating that OCT1 is not necessary for the renal secretion of dTub. Apical transporters are postulated to participate in its active secretion. To characterize a possible apical transporter, we screened several renal cell lines for a nucleoside-sensitive OCT. American opossum kidney proximal tubule cells (OK) express a TEA efflux transporter that is inhibited by dTub and other nucleoside analogs. This carrier is metabolic-dependent and distinct from the cloned OCTs to date, i.e. it is sodium- and proton-independent. In conclusion, dTub is a good substrate for OCT1; however, this OCT is not necessary for its renal secretion in mice. The novel TEA efflux transporter identified in OK cells is likely to participate in the renal secretion of dTub and perhaps other nucleoside analogs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spontaneously hypertensive rat (SHR) is a model of essential hypertension. During the early development of hypertension, the SHR demonstrates increased proximal tubule (PT) Na+ reabsorption. I hypothesized that the increased PT Na+ reabsorption exhibited by the young SHR was due to altered sub-cellular distribution of Na+, K +-ATPase compared to the normotensive Wistar Kyoto (WKY). The hypothesis is supported, herein, by observations of greater Na+, K +-ATPase α 1 abundance in PT plasma membrane and lower abundance in late endosomes of 4wk SHR despite no difference in total PT α 1 abundance. There is a greater amount of Ser-18 unphosphorylated α 1 in the 4wk SHR PT. Total PT Na+, K+-ATPase γ abundance is greater in SHR at 4wk and 16wk but γ abundance in plasma membrane is greater only at 4wk. The phosphatase, calcineurin, was chosen for study because it is involved in the stimulation of Na+, K +-ATPase. No difference in calcineurin coding sequence, expression, or activity was observed in SHR. Gene expression arrays were next used to find candidate genes involved in the regulation of Na+, K +-ATPase. The first candidate analyzed was soluble epoxide hydrolase (sEH). The gene encoding sEH (EPHX2) showed lower expression in SHR. There was also a reduction in sEH protein abundance but there was no correlation between protein abundance and blood pressure in F2 progeny. Two EPHX2 alleles were identified, an ancestral allele and a variant allele containing four polymorphisms. sEH activity was greater in animals carrying the variant allele but the inheritance of the variant allele did not correlate with blood pressure. Gene expression arrays also led to the examination of genes involved in redox balance/Na+, K+-ATPase regulation. A pattern of lower expression of genes involved in reactive radical detoxification in SHR was discerned. Six transcription factor binding sites were identified that occurred more often in these genes. Three transcription factors that bind to the HNF1 site were expressed at lower levels in SHR. This points to the HNF1 transcriptional complex as an important trans-acting regulator of a wide range of genes involved in altered redox balance in SHR. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The place-specific activity of hippocampal cells provides downstream structures with information regarding an animal's position within an environment and, perhaps, the location of goals within that environment. In rodents, recent research has suggested that distal cues primarily set the orientation of the spatial representation, whereas the boundaries of the behavioral apparatus determine the locations of place activity. The current study was designed to address possible biases in some previous research that may have minimized the likelihood of observing place activity bound to distal cues. Hippocampal single-unit activity was recorded from six freely moving rats as they were trained to perform a tone-initiated place-preference task on an open-field platform. To investigate whether place activity was bound to the room- or platform-based coordinate frame (or both), the platform was translated within the room at an "early" and at a "late" phase of task acquisition (Shift 1 and Shift 2). At both time points, CA1 and CA3 place cells demonstrated room-associated and/or platform-associated activity, or remapped in response to the platform shift. Shift 1 revealed place activity that reflected an interaction between a dominant platform-based (proximal) coordinate frame and a weaker room-based (distal) frame because many CA1 and CA3 place fields shifted to a location intermediate to the two reference frames. Shift 2 resulted in place activity that became more strongly bound to either the platform- or room-based coordinate frame, suggesting the emergence of two independent spatial frames of reference (with many more cells participating in platform-based than in room-based representations).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lindane, or γ-hexachlorocyclohexane, is a chlorinated hydrocarbon pesticide that was banned from U.S. production in 1976, but until recently continued to be imported and applied for occupational and domestic purposes. Lindane is known to cause central nervous system (CNS), immune, cardiovascular, reproductive, liver, and kidney toxicity. The mechanism for which lindane interacts with the CNS has been elucidated, and involves antagonism of the γ-aminobutyric acid/benzodiazepine (GABAA/BZD) receptor. Antagonism of this receptor results in the inhibition of Cl- channel flux, with subsequent convulsions, seizures, and paralysis. This response makes lindane a desirable defense against arthropod pests in agriculture and the home. However, formulation and application of this compound can contribute to human toxicity. In conjunction with this exposure scenario, workers may be subject to both heat and physical stress that may increase their susceptibility to pesticide toxicity by altering their cellular stress response. The kidneys are responsible for maintaining osmotic homeostasis, and are exposed to agents that undergo urinary excretion. The mechanistic action of lindane on the kidneys is not well understood. Lindane, in other organ systems, has been shown to cause cellular damage by generation of free radicals and oxidative stress. Previous research in our laboratory has shown that lindane causes apoptosis in distal tubule cells, and delays renal stress response under hypertonic stress. Characterizing the mechanism of action of lindane under conditions of physiologic stress is necessary to understand the potential hazard cyclodiene pesticides and other organochlorine compounds pose to exposed individuals under baseline conditions, as well as under conditions of physiologic stress. We demonstrated that exposure to lindane results in oxidative damage and dysregulation of glutathione response in renal distal tubule (MDCK) cells. We showed that under conditions of hypertonic stress, lindane-induced oxidative stress resulted in early onset apoptosis and corresponding down-regulated expression of the anti-apoptotic protein, Bcl-xL. Thus, the interaction of lindane with renal peripheral benzodiazepine receptors (PBR) is associated with attenuation of cellular protective proteins, making the cell more susceptible to injury or death. ^