6 resultados para Protein determination

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion "strains" or variants--a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes--continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat shock protein 70 (Hsp70) plays a central role in protein homeostasis and quality control in conjunction with other chaperone machines, including Hsp90. The Hsp110 chaperone Sse1 promotes Hsp90 activity in yeast, and functions as a nucleotide exchange factor (NEF) for cytosolic Hsp70, but the precise roles Sse1 plays in client maturation through the Hsp70-Hsp90 chaperone system are not fully understood. We find that upon pharmacological inhibition of Hsp90, a model protein kinase, Ste11DeltaN, is rapidly degraded, whereas heterologously expressed glucocorticoid receptor (GR) remains stable. Hsp70 binding and nucleotide exchange by Sse1 was required for GR maturation and signaling through endogenous Ste11, as well as to promote Ste11DeltaN degradation. Overexpression of another functional NEF partially compensated for loss of Sse1, whereas the paralog Sse2 fully restored GR maturation and Ste11DeltaN degradation. Sse1 was required for ubiquitinylation of Ste11DeltaN upon Hsp90 inhibition, providing a mechanistic explanation for its role in substrate degradation. Sse1/2 copurified with Hsp70 and other proteins comprising the "early-stage" Hsp90 complex, and was absent from "late-stage" Hsp90 complexes characterized by the presence of Sba1/p23. These findings support a model in which Hsp110 chaperones contribute significantly to the decision made by Hsp70 to fold or degrade a client protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternative RNA splicing plays an integral role in cell fate determination and function, especially in the cells of the brain. Errors in RNA processing contribute to diseases such as cancer, where it leads to the production of oncogenic proteins or the loss of tumor suppressors. In silica mining suggests that hundreds of splice isoforms are misexpressed in the glial cell-derived glioma. However, there is little experimental evidence of the prevalence and contribution of these changes and whether they contribute to the formation and progression of this devastating malignancy. To determine the frequency of these aberrant events, global profiling of alternative RNA splice patterns in glioma and nontumor brain was conducted using an exon array. Most splicing changes were less than 5-fold in magnitude and 14 cassette exon events were validated, including 7 previously published events. To determine the possible causes of missplicing, the differential expression levels of splicing factors in these two tissues were also analyzed. Six RNA splicing factors had greater than 2-fold changes in expression. The highest differentially expressed factor was polypyrimidine tract binding protein-1 (PTB). Evaluation by immunohistochemistry determined that this factor was elevated in both early and late stages of glioma. Glial cell-specific PTB expression in the adult brain led me to examine the role of PTB in gliomagenesis. Downregulation of PTB slowed glioma cell proliferation and migration and enhanced cell adhesion to fibronectin and vitronectin. To determine whether PTB was affecting these processes through splicing, genome-wide exon expression levels were correlated with PTB levels. Surprisingly, previously reported PTB target transcripts were insensitive to changes in PTB levels in both patient samples and PTB-depleted glioma cells. Only one validated glioma-specific splice target, RTN4/Nogo, had a significant PTB-mediated splicing change. Downregulation of PTB enhanced inclusion of its alternative exon 3, which encodes an auxiliary domain within a neurite inhibitor protein. Overexpression of this splice isoform in glioma cells slowed proliferation in a manner similar to that observed in PTB knockdown cells. In summary, aberrant expression of splicing factors such as PTB in glioma may elicit changes in splicing patterns that enhance tumorigenesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell growth and differentiation are complex and well-organized processes in which cells respond to stimuli from the environment by carrying out genetic programs. Transcription factors with helix-loop-helix (HLH) motif play critical roles in controlling the expression of genes involved in lineage commitment, cell fate determination, proliferation and tumorigenesis. This study has examined the roles of GCIP (CCNDBP1) in cell differentiation and tumorigenesis. GCIP is a recently identified HLH-leucine zipper protein without a basic region like the Id family of proteins. However, GCIP shares little sequence homology with the Id proteins and has domains with high acidic amino acids and leucine-rich regions following the HLH domain like c-Myc. Here we firstly demonstrate that GCIP is a transcription regulator related to muscle differentiation program. Overexpression of GCIP in C2C12 cells not only promotes myotube formation but also upregulates myogenic differentiation biomarkers, including MHC and myogenein. On the other hand, our finding also suggests that GCIP is a potential tumor suppressor related to cell cycle control. Expression of GCIP was significantly down-regulated in colon tumors as compared to normal colon tissues. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation on soft agar assays while silencing of GCIP expression by siRNA can promote cell proliferation and colony formation. In addition, results from transgenic mice specifically expressing GCIP in liver also support the idea that GCIP is involved in the early stage of hepatocarcinogenesis and decreased susceptibility to chemical hepatocarcinogenesis. ^