4 resultados para Proportional counters.

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchically clustered populations are often encountered in public health research, but the traditional methods used in analyzing this type of data are not always adequate. In the case of survival time data, more appropriate methods have only begun to surface in the last couple of decades. Such methods include multilevel statistical techniques which, although more complicated to implement than traditional methods, are more appropriate. ^ One population that is known to exhibit a hierarchical structure is that of patients who utilize the health care system of the Department of Veterans Affairs where patients are grouped not only by hospital, but also by geographic network (VISN). This project analyzes survival time data sets housed at the Houston Veterans Affairs Medical Center Research Department using two different Cox Proportional Hazards regression models, a traditional model and a multilevel model. VISNs that exhibit significantly higher or lower survival rates than the rest are identified separately for each model. ^ In this particular case, although there are differences in the results of the two models, it is not enough to warrant using the more complex multilevel technique. This is shown by the small estimates of variance associated with levels two and three in the multilevel Cox analysis. Much of the differences that are exhibited in identification of VISNs with high or low survival rates is attributable to computer hardware difficulties rather than to any significant improvements in the model. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard analyses of survival data involve the assumption that survival and censoring are independent. When censoring and survival are related, the phenomenon is known as informative censoring. This paper examines the effects of an informative censoring assumption on the hazard function and the estimated hazard ratio provided by the Cox model.^ The limiting factor in all analyses of informative censoring is the problem of non-identifiability. Non-identifiability implies that it is impossible to distinguish a situation in which censoring and death are independent from one in which there is dependence. However, it is possible that informative censoring occurs. Examination of the literature indicates how others have approached the problem and covers the relevant theoretical background.^ Three models are examined in detail. The first model uses conditionally independent marginal hazards to obtain the unconditional survival function and hazards. The second model is based on the Gumbel Type A method for combining independent marginal distributions into bivariate distributions using a dependency parameter. Finally, a formulation based on a compartmental model is presented and its results described. For the latter two approaches, the resulting hazard is used in the Cox model in a simulation study.^ The unconditional survival distribution formed from the first model involves dependency, but the crude hazard resulting from this unconditional distribution is identical to the marginal hazard, and inferences based on the hazard are valid. The hazard ratios formed from two distributions following the Gumbel Type A model are biased by a factor dependent on the amount of censoring in the two populations and the strength of the dependency of death and censoring in the two populations. The Cox model estimates this biased hazard ratio. In general, the hazard resulting from the compartmental model is not constant, even if the individual marginal hazards are constant, unless censoring is non-informative. The hazard ratio tends to a specific limit.^ Methods of evaluating situations in which informative censoring is present are described, and the relative utility of the three models examined is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation develops and explores the methodology for the use of cubic spline functions in assessing time-by-covariate interactions in Cox proportional hazards regression models. These interactions indicate violations of the proportional hazards assumption of the Cox model. Use of cubic spline functions allows for the investigation of the shape of a possible covariate time-dependence without having to specify a particular functional form. Cubic spline functions yield both a graphical method and a formal test for the proportional hazards assumption as well as a test of the nonlinearity of the time-by-covariate interaction. Five existing methods for assessing violations of the proportional hazards assumption are reviewed and applied along with cubic splines to three well known two-sample datasets. An additional dataset with three covariates is used to explore the use of cubic spline functions in a more general setting. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sizes and power of selected two-sample tests of the equality of survival distributions are compared by simulation for small samples from unequally, randomly-censored exponential distributions. The tests investigated include parametric tests (F, Score, Likelihood, Asymptotic), logrank tests (Mantel, Peto-Peto), and Wilcoxon-Type tests (Gehan, Prentice). Equal sized samples, n = 18, 16, 32 with 1000 (size) and 500 (power) simulation trials, are compared for 16 combinations of the censoring proportions 0%, 20%, 40%, and 60%. For n = 8 and 16, the Asymptotic, Peto-Peto, and Wilcoxon tests perform at nominal 5% size expectations, but the F, Score and Mantel tests exceeded 5% size confidence limits for 1/3 of the censoring combinations. For n = 32, all tests showed proper size, with the Peto-Peto test most conservative in the presence of unequal censoring. Powers of all tests are compared for exponential hazard ratios of 1.4 and 2.0. There is little difference in power characteristics of the tests within the classes of tests considered. The Mantel test showed 90% to 95% power efficiency relative to parametric tests. Wilcoxon-type tests have the lowest relative power but are robust to differential censoring patterns. A modified Peto-Peto test shows power comparable to the Mantel test. For n = 32, a specific Weibull-exponential comparison of crossing survival curves suggests that the relative powers of logrank and Wilcoxon-type tests are dependent on the scale parameter of the Weibull distribution. Wilcoxon-type tests appear more powerful than logrank tests in the case of late-crossing and less powerful for early-crossing survival curves. Guidelines for the appropriate selection of two-sample tests are given. ^