7 resultados para Prolifération de thymocyte

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes thymus organogenesis Kim T. Cardenas The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, which in turn is positively regulated by Shh. Although initially expressed throughout pharyngeal pouch endoderm, Tbx1 expression is excluded from the thymus-specific domain of the 3rd PP by E10.5, but persists in the parathyroid domain. Based on these observations, we hypothesized that Tbx1 expression is non-permissive for thymus fate specification and that enforced expression of Tbx1 in the fetal thymus would impair thymus development. To test this hypothesis, we generated knock-in mice containing a Cre-inducible allele that allows for tissue-specific Tbx1 expression. Expression of the R26iTbx1 allele in fetal and adult thymus using Foxn1Cre resulted in severe thymus hypoplasia throughout ontogeny that persisted in the adult. Thymic epithelial cell (TEC) development was impaired as determined by immunohistochemical and FACS analysis of various differentiation markers. The relative level of Foxn1 expression in fetal TECs was significantly reduced. TECs in R26iTbx1/+ thymi assumed an almost universal expression of Plet-1, a marker associated with a TEC stem/progenitor cell fate. In addition, embryonic R26iTbx1/+ mice develop a perithymic mesechymal capsule that appears expanded compared to control littermates. Interestingly, thymi from neonatal and adult R26iTbx1/+ but not R26+/+ mice were encased in adipose tissue. This thymic phenotype also correlated with a decrease in thymocyte cellularity and aberrant thymocyte differentiation. The results to date support the conclusion that enforced expression of Tbx1 in TECs antagonizes their differentiation and prevents normal organogenesis via both direct and indirect effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-cell lymphomas from AKR mice were studied to determine their potential as a model of T-cell differentiation. Homogeneous tumor cell lines have been used as model to study normal lymphocyte subpopulations, including differentiation lineages, functional properties, and the inducibility to maturation. The underlying concept is that each lymphoid tumor represents a monoclonal neoplastic proliferation of a discrete lymphoid subpopulation arrested at a particular differentiation stage.^ Individual tumors were analyzed to determine the extent of intertumor heterogeneity, and to determine whether lymphomas represented different thymocyte subsets, by determining the cell-surface antigenic phenotype, PNA-binding capacity, and terminal deoxynucleotidyl transferase (TdT) activity. Splenic and thymic tumor cells were compared to determine if the particular lymphoid microenvironment influenced T-cell marker expression. Several of the lymphomas were passaged in syngeneic hosts to verify the original tumor phenotype and to assess the stability of the cell surface and TdT phenotype after transplantation.^ Lymphomas were adapted to in vitro culture to determine whether the T-cell phenotype was maintained in the absence of the host microenvironment. Clonal progeny were analyzed and compared with each other and with parent cell lines to determine the extent of intratumor heterogeneity in this lymphoma system. Parent and cloned cell lines were passaged in vivo to determine whether alterations in surface phenotype occurred after transplantation.^ Our investigation has verified that most spontaneous AKR lymphomas phenotypically resemble known T-cell subsets, including both immature and mature thymic subpopulations. The in vitro lines, however, expressed a highly unstable phenotype in culture that included loss of Ly-1 and Ly-2 antigen expression. After transplantation in vivo, the in vitro lines exhibited alterations in phenotype, including re-expression of Ly antigen on some lymphomas. The inducibility of T-cell antigen markers on tumor cell lines passaged in vivo suggests that the in vitro lines may serve as a possible model system to study the molecular events involved in gene expression in the T-cell system. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiency of the enzyme adenosine deaminase (ADA) results in severe lymphopenia in humans. Mice with an inactivating mutation in the ADA gene also exhibit profound lymphopenia, as well as pulmonary insufficiency and ribcage abnormalities. In fact, the mouse model has a phenotype that is remarkably similar to that of the human disease, making the mice valuable tools for unraveling the mechanism of lymphocyte destruction in absence of this housekeeping gene. T cell deficiency in ADA deficiency has been extensively studied by others, revealing a block in early thymocyte development. In contrast, our studies revealed that early B cell development in the bone marrow is normal. ADA-deficient mice, however, exhibit profound defects in germinal center formation, preventing antigen-dependent B cell maturation in the spleen. ADA-deficient spleen B cells display significant defects in proliferation and activation signaling, and produce more IgM than their normal counterparts, suggesting that extrafollicular plasmablasts are overrepresented. B cells from ADA-deficient mouse spleens undergo apoptosis more readily than those from normal mouse spleens. Levels of ADA's substrates, adenosine and 2′-deoxyadenosine, are elevated in both bone marrow and spleen in ADA-deficient mice. S ′-adenosyihomoeysteine hydrolase (SAH hydrolase) activity is significantly inhibited in both locales, as well. dATP levels, though, are only elevated in spleen, where B cell development is impaired, and not in bone marrow, where B cell ontogeny is normal. This finding points to dATP as the causative agent of lymphocyte death in ADA deficiency. ADA deficiency results in inhibition of the enzyme ribonucleotide reductase, thereby depleting nucleoside pools needed for DNA repair. Another mouse model that lacks a functional gene encoding a protein involved in DNA repair and/or cell cycle checkpoint regulation, p53-binding protein 1, exhibits blocks in T and B cell development that are similar to those seen in ADA-deficient mice. Unraveling the mechanisms of lymphocyte destruction in ADA deficiency may further understanding of lymphocyte biology, facilitate better chemotherapeutic treatment for lymphoproliferative diseases, and improve gene and enzyme therapy regimens attempted for ADA deficiency. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell development is a multistage process of differentiation that depends on proper thymocyte-thymic epithelial cell (TEC) interactions. Epithelial cells in the thymus are organized in a three-dimensional network that provides support and signals for thymocyte maturation. Concurrently, proper TEC differentiation in the adult thymus relies on thymocyte-derived signals. TECs produce interleukin-7 (IL-7), a non-redundant cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We have identified IL-7 expressing TECs throughout ontogeny and in the adult thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the thymic primordium by embryonic day 11.5, in a Foxn1 independent pathway. Marked changes occur in the localization and regulation of IL-7 expressing TECs during development. Whereas IL-7 expressing TECs are present throughout the early thymic rudiment, the majority of IL-7 producing TECs are concentrated in the adult thymic medulla. By analyzing mouse strains that sustain blocks at different stages of thymocyte development, we show that IL-7 expression is initiated independently of hematopoietic-derived signals during thymic organogenesis. However, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Furthermore, distinct thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium. Intraperitoneal injection of Recombination Activating Gene deficient mice (RAG-2−/−) with anti-CD3ϵ monoclonal antibody (mAb) induces CD4− 8− double negative thymocytes to undergo β-selection and differentiate into CD4+8+ cells. Analysis of the thymic stromal compartment reveals that progression through β-selection renders thymocytes competent to alter the pattern of IL-7 expression in the cortical TEC compartment. RAG-2−/− mice do not generate mature T cells and therefore the RAG-2−/− thymus is devoid of organized medullary regions. Histological examination of RAG-2−/− thymus following anti-CD3ϵ stimulation reveals the emergence of mature thymic medullary regions, as assessed by H & E staining and expression of thymic stromal medullary markers. Stromal medullary reorganization occurs in the absence of T cell receptor αβ expression, suggesting that activation of RAG-2−/− thymocytes by CD3ϵ ligation generates thymocyte-derived signals that induce thymic epithelial reorganization, generating a mature medullary compartment. This model provides a tool to assess the mechanisms underlying thymic medullary development. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of recent thymic emigrants (RTEs) to the peripheral naïve T cell population is necessary to maintain diversity of the T cell receptor (TCR) repertoire and produce immune responses against newly encountered antigens. The thymus involutes with age, after irradiation or chemotherapy, and due to severe viral infections. Thymus involution results in decreased thymopoiesis and RTE output leading to a reduced diversity of peripheral T cells. This increases susceptibility to disease and impairs immune responsiveness to vaccines. Therefore, studies aimed at maintaining or regenerating thymic function are integral for maintaining and restoring peripheral TCR diversity. Mice that express a K5.CyclinD1 transgene expression have a severely hyperplastic thymus that fails to undergo involution. Both thymocyte and TEC development appear normal in these mice. We have used the K5.CyclinD1 transgenic model to test the hypothesis that preventing thymus involution will sustain RTE output and incorporation into the peripheral T cell pool to prevent naïve T cell depletion with age. The K5.CyclinD1 transgene was crossed to the RAG2p-GFP transgenic model so that RTEs could be tracked by the intensity of the GFP signal. The frequency and number of RTEs in naïve CD4 splenic T cells was analyzed at monthly intervals to 5 months of age. Using this double transgenic approach, we determined that preventing thymus involution does maintain or enhance the number of RTEs in the peripheral T cell pool before and after thymus involution.